Скорость охлаждения при закалке. Влияние скорости охлаждения на структуру и свойства стали Скорость охлаждения при термической обработке

Этот вопрос удобнее выяснить на примере эвтектоидной стали (С = 0,8%). Из этой стали изготавливается серия образцов, все они нагреты до аустенитного состояния, т.е. выше 727°С и в дальнейшем каждый образец охлаждается с разной скоростью (рис. 38).

Рис. 38. Диаграмма изотермического распада переохлажденного аустенита эвтектоидной стали с наложенными на нее кривыми охлаждения:

а общий вид; б – получаемые структуры

Превращение аустенита при температурах 550°С и выше называется перлитным превращением, при 550°С…М Н – мартенситным (М Н – начало, М К – конец мартенситного превращения).

Перлитное превращение. В интервале температур перлитного превращения образуются пластинчатые структуры из кристаллов феррита и цементита, которые отличаются степенью дисперсности частиц Ф и Ц.

Дисперсность перлитных структур оценивается межпластинчатым расстоянием S соседних пластинок феррита и цементита (рис. 39).

Чтобы не спутать цементит с ферритом используют специальный травитель – пикрат натрия, который окрашивает цементит в черный цвет. Феррит при этом не окрашивается, т.е. остается светлым.

Рис. 39. Феррито-цементитная структура

Если превращение идет при температурах 650–670°С, то образуется перлит, S = 6·10 -4 мм.

При температурах превращения 640–590°С образуется сорбит,

S = 3·10 -4 мм.

При температурах превращения 580–550°С образуется троостит, S = 1´10 -4 мм.

Как видно из опыта с увеличением скорости охлаждения зерна феррито-цементитной смеси измельчаются все сильнее, что резко влияет на свойства. Так, например, у перлита НВ 2000, у сорбита НВ 3000. а у троостита НВ 4200, МПа.

Промежуточное (бейнитное) превращение. В результате промежуточного превращения образуется бейнит , представляющий собой структуру, состоящую из a-твердого раствора несколько пересыщенного углеродом и частиц цементита. Бейнитное превращение сочетает в себе элементы перлитного и мартенситного превращений. В аустените образуются объемы, обогащенные и обедненные углеродом. Обедненные углеродом участки аустенита претерпевают g ® a превращение бездиффузионным путем (мартенситным). В объемах аустенита, обогащенных углеродом, при t = 400–550°С происходит выделение частиц цементита. При t < 400°С частицы цементита выделяются в кристаллах a-фазы.

Бейнит, образовавшийся при температурах 400–550°С называется верхним бейнитом, он имеет перистое строение с худшими механическими свойствами (пониженные s в, КСU и d).

При более низких температурах (ниже 400°C) образуется нижний бейнит, он имеет игольчатое строение с лучшими механическими характеристиками (большим s в, КСU и d).


Мартенситное превращение аустенита. Мартенсит – это пересыщенный твердый раствор внедрения углерода вFe α

Мартенсит образуется только из аустенита в результате сильного переохлаждения последнего со скоростью не менее критической скорости закалки (V кр = – касательная к диаграмме, см. рис. 38, а ).

Мартенситные пластины (иглы) образуются почти мгновенно, со скоростью более 1000 м/с, только в пределах аустенитного зерна и не переходят границу между зернами. Поэтому размер игл мартенсита зависит от размера зерен аустенита. Чем мельче зерна аустенита, тем мельче иглы мартенсита и структура характеризуется как крупноигольчатый или мелкоигольчатый мартенсит. Решетка мартенсита тетрагональная, т.е. периоды с > а (рис. 40).

Рис. 40. Микроструктура и кристаллическая решетка мартенсита

Механизм мартенситного превращения состоит в том, что при температурах ниже М Н решетка аустенита, хорошо растворяющая углерод (до 2014%С) оказывается неустойчивой, и перестраивается в решетку Fe α , способность которой растворять углерод, очень мала (до 0,02%).

Из-за большой скорости охлаждения весь углерод, находящийся в аустените (ГЦК решетка) остается зафиксировать в Fe α (ОЦК решетка), где места для его размещения нет. Поэтому избыточный углерод искажает решетку, вызывает появление больших внутренних напряжений и, как следствие, твердость и прочность растут, а ударная вязкость и пластичность падают.

Аустенитно-мартенситное превращение сопровождается увеличе- нием объема. Все структуры стали можно расположить (от максимального объема к минимальному) в следующий ряд: мартенсит – троостит – сорбит – перлит – аустенит.

Отличие от перлитного превращения:

1) большая скорость превращения;

2) превращение бездиффузионное, т.е. без предварительного выде- ления углерода и образования Fe 3 C;

3) начинается превращение в точке М Н и заканчивается в точке М К, причем положение этих точек зависит только от химического состава сплава;

4) в структуре мартенсита всегда есть небольшое количество остаточного непревращенного аустенита (до 4%);

5) решетка мартенсита тетрагональная (а = b ¹ с ).

Виды термической обработки. Термической обработкой называется такая технологическая операция, при которой путем нагрева сплава до определенной температуры, выдержке при этой температуре и последующего охлаждения происходят структурные изменения, вызывающие изменения свойств металлов.

Термическая обработка проводится обычно в тех случаях, когда наблюдаются:

1) полиморфные превращения;

2) ограниченная и переменная (увеличивающаяся с температурой) растворимость одного компонента в другом в твердом состоянии;

3) изменение строения металла под влиянием холодной деформации.

Основными параметрами режимов термической обработки являются: температура и скорость нагрева, продолжительность выдержки при заданной температуре, скорость охлаждения.

Температура нагрева стали зависит от положения критических точек, вида термической обработки и назначается на основании анализа диаграммы состояния сплава.

Скорость нагрева зависит от химического состава сплава, размера и формы обрабатываемых деталей, массы садки, характера расположения деталей в печи, типа нагревательного устройства и т.д.

Выдержка при заданной температуре необходима для завершения фазовых превращений, происходящих в металле, выравнивания концентрации по всему объему детали. Время нагрева (40) складывается из времени собственного нагрева t н (2) и времени выдержки t в:

t общ = t н + t в (40)

где t в принимается равным 1 мин на 1 мм толщины для углеродистых сталей и 2 мин для легированных.

t н = 0,1D·K 1 ·K 2 ·K 3 (41)

где D – размер наибольшего сечения (размерная характеристика); K 1 – коэффициент среды (для газа – 2, соли – 1, металла – 0,5); K 2 – коэффициент формы (для шара – 1, цилиндра – 2, пластины – 4, параллелепипеда – 2,5); K 3 – коэффициент равномерного нагрева (всесторонний – 1, односторонний – 4).

Скорость охлаждения зависит, главным образом, от степени устойчивости аустенита, т.е. от химического состава стали, а также от структуры, которую необходимо получить.

В зависимости от скорости охлаждения углеродистой стали получают следующие структуры: феррит с перлитом, перлит, сорбит, тростит, мартенсит.

Согласно диаграмме состояния Fe-Fe 3 C, температурные точки, образующие линию PSK , обозначаются А 1 ; линию GS A 3 ; линию ES А ст. если рассматривается процесс нагрева, то перед цифровым индексом ставят букву С (А С1 , А С3), а если в случае охлаждения r (А r з, A r 1 ).

Углеродистые стали подвергаются следующим видам термической обработки: отжигу, нормализации, закалке и отпуску.

Отжиг стали. Цель отжига:

1) исправление структуры после горячей обработки (ковки, литья);

2) снижение твердости для облегчения обработки резанием;

3) снятие внутренних напряжений;

4) подготовка структуры к последующей термической обработке и холодной штамповке;

5) уменьшение химической неоднородности.

При полном отжиге сталь нагревается выше линии А С3 на 30–50°С, выдерживается нужное время при этой температуре и затем медленно охлаждается, как правило, вместе с печью (рис. 41).

При нагреве выше точки А С3 происходит перекристаллизация, в результате чего зерна измельчаются, внутренние напряжения устраняются, сталь становится мягкой и вязкой. Полному отжигу подвергают преимущественно доэвтектоидные стали.

В случае нагрева этих сталей ниже А С3 часть зерен феррита остается в том же виде, в каком он был до отжига (большие размеры, пластинчатая форма), что приводит к понижению вязкости стали.

При неполном отжиге сталь нагревается выше линии А С1 на 30–50°С и после выдержки медленно охлаждается вместе с печью. При неполном отжиге происходит лишь частичная перекристаллизация (перлит-аустенит). Этот вид применяется для заэвтектоидных сталей.

Нагрев этих сталей выше линии A с m (аустенитное состояние) нецелесообразен, так как растворенный в аустените цементит при последующем охлаждении будет выделяться по границам зерен перлита в виде сетки, что резко снижает пластичность и делает сталь хрупкой.

Диффузионный отжиг (гомогенизация) применяется для выравнивания химической неоднородности по объекту кристалла в крупных отливках. Он проводится при температуре 1050–1150°С и при более длительных выдержках (10–18 ч).

Рекристаллизационный отжиг применяется при снятии наклепа и внутренних напряжений в стали после холодной обработки давлением (прокатка, штамповка, вытяжка и др.). Для углеродистых сталей этот вид отжига проводится при температуре 650–690°С. В результате чего твердость понижается, а пластичность растет.

Охлаждение заготовок при различных операциях термической обработки выполняется с разной скоростью. При отжиге охлаждение должно быть медленным, а при закалке некоторых сталей, напротив, очень быстрым. Скорость охлаждения регулируется применением различных охлаждающих сред.

Охлаждение заготовок с печью, т.е. весьма медленное, используют при отжиге. Для всех остальных операций термической обработки охлаждение выполняется с большей скоростью. Охлаждение на воздухе используют при нормализации, а также при закалке сталей с очень высокой прокаливаемостью (воздушно-закаливающиеся стали).

Минимально допустимая скорость охлаждения при закалке сталей (чем ниже скорость, тем меньше величина закалочных напряжений, см. 11.6 и рис. 11.16) определяется их прокаливаемостью. Чем выше прокаливаемость стали, тем медленнее можно производить закалочное охлаждение (см. рис. 5.22), поэтому для разных сталей используют закалочные жидкости, обеспечивающие различную скорость охлаждения.

Охлаждающая (закалочная) среда должна обеспечить высокую скорость охлаждения при температурах наименьшей устойчивости переохлажденного аустенита (650... ...550 °С, см. рис. 5.7), чтобы предотвратить его распад. Напротив, в интервале температур мартенситного превращения (Мн...Мк) целесообразно медленное охлаждение для уменьшения закалочных напряжений. Характеристики наиболее применяемых в практике термической обработки закалочных сред приведены в табл. 15.2.

Таблица 15.2

Скорость охлаждения в различных закалочных средах

Скорость охлаждения, °С/с, при температуре, °С

Эмульсия

Масло машинное

Масло трансформаторное

Медные плиты

Раствор (10%) в воде

Железные плиты

Воздух спокойный

Воздух под давлением

Вода и водные растворы – это дешевые и широко распространенные охладители. Их достоинство – высокая скорость охлаждения в области минимальной устойчивости переохлажденного аустенита; недостаток – также высокая скорость охлаждения в области мартенситного превращения (см. табл. 15.2). Использование этих сред повышает прокаливаемость, но увеличивает вероятность появления деформаций и трещин. Воду используют при закалке углеродистых сталей.

При закалке в воде возможно появление пятнистой твердости (см. 5.2.2). Для предотвращения этого брака в качестве закалочных жидкостей используют водные растворы солей и щелочей, обладающие более высокой температурой парообразования. Но при этом резко повышается скорость охлаждения (см. табл. 15.2), что определяет бо́льшую величину закалочных напряжений.

Масла в интервале Мн...Мк обеспечивают по сравнению с водой значительное снижение скорости охлаждения, это ведет к снижению закалочных напряжений и деформаций. Однако охлаждение в интервале минимальной устойчивости переохлажденного аустенита замедляется (см. табл. 15.2), поэтому масла используют при закалке легированных сталей с более высокой прокаливаемостью.

Эмульсия масла в воде (эмульсии состоят из мельчайших взвешенных капель масла в воде) и вода с температурой 30...40 °С снижают скорость охлаждения в интервале 650-550 °С (см. табл. 15.2) и тем самым вероятность возникновения деформаций, одновременно уменьшая прокаливаемость. Эти среды используют при закалке ТВЧ, когда необходимо закалить только поверхность детали.

Для сталей, обладающих глубокой прокаливаемостью, в качестве закалочной среды используют воздух – спокойный, который обеспечивает очень низкую скорость охлаждения, или под давлением, когда необходимо охлаждать быстрее (см. табл. 15.2). В обоих случаях закалочные напряжения малы.

Охлаждение под металлическими плитами также происходит с низкими скоростями (см. табл. 15.2). Такая технология совмещает закалку с правкой (исправлением формы) и практически исключает деформации.

При закалке крупногабаритных деталей применяют водовоздушные смеси. Их подают на деталь через специальные форсунки. Охлаждающую способность смесей можно регулировать, изменяя количество в ней воды и давление воздуха.

Использование в качестве охлаждающих жидкостей водных растворов полимеров позволяет менять скорость охлаждения в широких пределах – между скоростями охлаждения в воде и в масле. Их применяют при объемной и поверхностной закалке.

Для многих конструкционных сталей температуры Мн лежат в пределах 170-330 °С. Для их изотермической закалки (выполняется путем выдержки при температуре несколько выше точки Мн) используют расплавы солей. В частности, применяют уже рассмотренную выше смесь NaNO3 (45%) и KNO3(55%), работоспособную в интервале 160...650 °С.

Структура и свойства закаленной стали в большей степени зависят не только от температуры нагрева, но и от скорости охлаждения. Получение закалочных структур обусловлено переохлаждением аустенита ниже линии PSK, где его состояние является неустойчивым. Увеличивая скорость охлаждения, можно обеспечивать его переохлаждение до весьма низких температур и превратить в различные структуры с разными свойствами. Превращение переохлажденного аустенита может идти как при непрерывном охлаждении, так и изотермически, в процессе выдержки при температурах ниже точки Ar1 (т.е. ниже линии PSK).

Влияние степени переохлаждения на устойчивость аустенита и скорость его превращения в различные продукты представляют графически в виде диаграмм в координатах «температура-время». В качестве примера рассмотрим такую диаграмму для стали эвтектоидного состава (рис 3). Изотермический распад переохлажденного аустенита в этой стали происходит в интервале температур от Ar1 (727 °С) до Мн (250 °С), где Мн -температура начало мартенситного превращения. Мартенситное превращение в большинстве сталей может идти только при непрерывном охлаждении.

Рис.3 Диаграмма распада аустенита для стали эвтектоидного состава.

На диаграмме (см. рис 3) нанесены две линии, имеющие форму буквы «С», так называемые «С-кривые». Одна из них (левая) указывает время начало распада переохлажденного аустенита при разных температурах, другая (правая) - время окончания распада, В области, расположенной левее линии начала распада, существует переохлажденный аустенит. Между С-кривыми имеется как аустенит, так и продукты его распада. Наконец, правее линии конца распада существуют только продукты превращения.

Превращение переохлажденного аустенита при температурах от Ar1 до 550 0С называют перлитным. Если аустенит переохлажден до температур 550...Mн, - его превращение называется промежуточным.

В результате перлитного превращения образуются пластинчатые структуры перлитного типа, представляющие собой феррито-цементитные смеси различной дисперсности. С увеличением степени переохлаждения в соответствии с общими законами кристаллизации возрастает число центров. Уменьшается размер образующихся кристаллов, т.е. возрастает дисперсность феррито-цементитной смеси. Так если превращение происходит при температурах, лежащих в интервале Ar1...650°C, образуется грубая феррито-цементитная смесь, которую называют собственно перлитом. Структура перлита является стабильной, т.е. неизменяемой с течением времени при комнатной температуре.

Все остальные структуры, образующиеся при более низких температурах, т.е. при переохлаждениях аустенита, относятся к метастабильным. Так при переохлаждении аустенита до температур 650...590°С он превращается в мелкую феррито-цементитную смесь, называемую сорбитом.

При ещё более низких температурах 590... 550 °С образуется тростит -весьма дисперсная феррито-цементитная смесь. Указанные деления перлитных структур в известной степени условно, так как дисперсность смесей монотонно возрастает с понижением температуры превращения. Одновременно с этим возрастают твёрдость и прочность сталей. Так твёрдость перлита в эвтектовдной стали составляет 180...22- НВ (8...19 HRC), сорбита - 250...350 НВ (25...38 НRС), тростита - 400...450 НВ (43...48HRC).

При переохлаждении аустенита до температур 550...МН он распадается с образованием бейнита. Это превращение называется промежуточным, так как в отличие от перлитного оно частично идет по так называемому мартенситному механизму, приводя к образованию смеси цементита и несколько пересыщенного углеродом феррита. Бейнитная структура отличается высокой твёрдостью 450...550 НВ.

Рис.4 Диаграмма распада аустенита для доэвтектоидной (а) и заэвтектоидной (б) сталей.

На диаграммах распада аустенита для доэвтектоидных и заэвтектоидных сталей (рис.4.) имеется дополнительная линия, показывающая время начала выделения из аустенита избыточных кристаллов феррита или цементита. Выделение этих избыточных структур происходит только при небольших переохлаждениях. При значительном переохлаждении аустенит превращается без предварительного выделения феррита или цементита, В этом случае содержание углерода в образовавшейся смеси отличается от эвтектоидного.

В случае непрерывного охлаждения аустенита с различной скоростью его превращение развивается не при постоянной температуре, а в некотором интервале температур. Для того, чтобы определить структуры, получающиеся при непрерывном охлаждении, нанесём на диаграмму распада аустенита кривые скорости охлаждения образцов углеродистой эвтектоидной стали (рис.5.).

Из этой диаграммы видно, что при очень малой скорости охлаждения V1 которая обеспечивается охлаждением вместе с печью (например, при отжиге), получается структура перлита. При скорости V2 (на воздухе) превращение идёт при несколько более низких температурах. Образуется структура перлит, но более дисперсный. Такая обработка называется нормализацией и широко применяется для малоуглеродистых сталей (иногда и для среднеуглеродистых) взамен отжига в качестве смягчающей.

Рис.5. Кривые распада аустенита при непрерывном охлаждении эвтектоидной стали.

При скорости V3 (охлаждение в масле) превращение аустенита идёт при таких температурах, которые обеспечивают получение сорбитной структуры, а иногда и троститной.

Если аустенит охлаждать с очень большой скоростью (V4), то он переохлаждается до весьма низкой температуры, обозначенной на диаграммах, как Мн. Ниже этой температуры происходит бездиффузионное мартенситное превращение, приводящее к образованию структуры мартенсита. Для углеродистых сталей такую скорость охлаждения обеспечивает, например, вода

В общем случае минимальная скорость охлаждения, при которой весь аустенит переохлаждается до температуры Мн и превращается в мартенсит, называется критической скоростью закалки. На рис.5, она обозначена, как Vкр и является касательной к С-кривой. Критическая скорость закалки - важнейшая технологическая характеристика стали. Она определяет выбор охлаждающих сред для получения мартенситной структуры.

Величина критической скорости закалки зависит от химического состава стали и некоторых других факторов. Так, например, у некоторых легированных сталей даже охлаждение на воздухе обеспечивает скорость больше критической.

При закалке на мартенсит необходимо учитывать, что эта структура имеет большой удельный объём и её образование сопровождается как заметным увеличением объёма закаливаемого изделия, так и резким увеличением внутренних напряжений, которые в свою очередь приводят к деформации или даже к образованию трещин. Всё это в сочетании с повышенной хрупкостью мартенсита требует проведения дополнительной термической обработки закалённых деталей - операции отпуска