Естествознание

Симметрия и асимметрия


  Прошли тысячелетия, прежде чем человечество в ходе своей

общественно-производственной деятельности осознало необходимость выразить  в
определенных понятиях установленные им прежде

всего в природе две тенденции: наличие строгой упорядоченности,

соразмерности, равновесия и их нарушения.
  Люди  давно  обратили  внимание   на   правильность   формы   кристаллов,
геометрическую  строгость  строения  пчелиных  сот,   последовательность   и
повторяемость расположения ветвей и листьев на

деревьях, лепестков, цветов, семян растений и отобразили эту

упорядоченность в своей практической деятельности, мышлении

и искусстве.
  Понятие «симметрия» употреблялось в двух значениях. В одном

смысле симметричное означало нечто  пропорциональное;  симметрия  показывает
тот способ согласования многих частей, с

помощью которого они объединяются в целое. Второй смысл этого

слова — равновесие.
  Греческое слово (((((((( означает однородность, соразмерность,

пропорциональность, гармонию.
  Познавая качественное многообразие проявлений порядка и

гармонии в природе, мыслители древности, особенно греческие

философы, пришли к выводу о необходимости выразить симметрию

и в количественных отношениях, при помощи геометрических

построений и чисел.
   Симметрия  форм  предметов  природы  как  выражение   пропорциональности,
соразмерности, гармонии подавляла древнего человека

своим  совершенством,  и  это   было   использовано   религией,   различными
представлениями мистицизма,  пытавшимися  истолковать  наличие  симметрии  в
объективной действительности для доказательства

всемогущества богов, якобы вносящих  порядок  и  гармонию  в  первоначальный
хаос. Так, в учении  пифагорейцев  симметрия,  симметричные  фигуры  и  тела
(круг и шар) имели мистическое значение, являлись воплощением  совершенства.

   Следует обратить внимание и на учение Пифагора о гармонии.

Известно, что если уменьшить длину струны или флейты вдвое,

тон повысится на одну октаву. Уменьшению в отношении 3:2 и

4:3 будут соответствовать интервалы  квинта  и  кварта.  То,  что  важнейшие
гармонические интервалы получаются при помощи отношений чисел 1, 2 и  3,  4,
пифагорейцы использовали для своих мистических выводов о том, что «все  есть
число» или «все упорядочивается в соответствии с числами».  Сами  эти  числа
1, 2, 3, 4 составляли

знаменитую «тетраду». Очень древнее изречение гласит: «Что есть

оракул дельфийский? Тетрада! Ибо она есть музыкальная гамма

сирен». Геометрическим образом тетрады является треугольник из

десяти точек, основание которого составляют 4 точки плюс 3,

плюс 2, а одна находится в центре.
   В геометрии, механике — всюду, где мы имеем дело с отрезками

прямых, мы встречаемся и с понятиями  меры,  сравнения  и  соотношения.  Эти
понятия являются отражением реальных отношений

между предметами в объективном мире. Чтобы  пояснить  это  положение,  можно
выбрать на данной прямой АВ любую третью точку С.

Таким образом, совершается переход от единства к двойственности,

и мысль этим самым приводит к понятию пропорции. Следует

подчеркнуть, что соотношение есть количественное сравнение двух

однородных величин, или число, выражающее это сравнение. Про-

порция есть результат согласования или  равноценности  двух  или  нескольких
соотношений. Следовательно, необходимо наличие

не менее трех величин (в рассматриваемом случае прямая и два

ее отрезка) для определения пропорции. Деление данного отрезка

прямой АВ путем выбора третьей точки С, находящейся между

А и В, дает возможность построить шесть различных возможных

соотношений:

                  a:b ; a:c ; b:a ; b:c ; c:a ; c:b

при условии отметки соответствующей длины отрезков прямой бук-

вами «а», «b», «с» и применения к данной длине любой системы

мер. Проанализировав возможные случаи деления отрезка АВ на

две части, мы приходим к выводу, что отрезок можно делить на:


 1) две симметрические части   a=b;    2)  a:b = c:a


 Так как c = a + b, то

   a/b = (a + b)/a ;

( (a + b)/a   очевидно, превосходит единицу);  дело  обстоит  так  же  и  в
отношении а/b;  значит, «а» превосходит «b» и точка «С»  стоит  ближе  к  В,
чем

к A.
   Это соотношение a:b = c:a или AC/CB = AB/AC
может быть выражено следующим образом: длина АВ была разделе-

на на две неравные части таким образом, что большая из ее частей

относится к меньшей, как длина всего отрезка АВ относится
к его большей части:

3) a/b = b/c равноценно a/b = b/(a + b).

В этом случае «b» больше «а»; точка С ближе к А, чем к В, но отношения те
же, что и во втором случае,
  Рассмотрим равенство

                    a/b = c/a = (a + b)/a,

при котором отрезок АС длиннее отрезка СВ. Это общее простейшее

деление отрезка прямой АВ, являющееся логическим выражением

принципа наименьшего действия. Между точками А и В имеется

лишь одна точка C, поставленная таким образом, чтобы длина отрез-

ков АВ, СВ и АС соответствовала принципу простейшего деления;

следовательно, существует только одно числовое выражение, соответствующее
отношению a/b. Эту же задачу можно решить путем гео-

метрического построения, известного как деление прямой на две

неравные части таким образом, чтобы соотношение меньшей и боль-

шей частей равнялось соотношению большей части и суммы длин

обеих частей, а это и соответствует формуле

                 a/b = (a + b)/a,
которую называют «божественная пропорция», «золотое сечение»  т.д.
      Изучение объективной реальности и задачи практики привели к
возникновению наряду с понятием симметрия и понятия асимметрии, которое
нашло одно из своих первых количественных выражений в так назыываемом
золотом делении, или золотой пропорции.
      Пифагор выразил «золотою пропорцию» соотношением:

      А:Н = R:B,

 где Н и R суть гармоническая и арифметическая средние между

величинами А и В.

            R = (A + B)/2;      H = 2AB/ (A + B).

   Кеплер первый обращает вни-

мание на значение этой пропорции в ботанике и называет ее

sectio divina — «божественное сечение»; Леонардо да Винчи назы-

вает эту пропорцию «золотое сечение».
  Проведем некоторые преобразования вышеприведенной формулы.

Прежде всего разделим на «b» оба элемента второго члена этого

равенства и обозначим

  a/b = x; тогда a/b =  (a/b + 1)/(a/b),

                      или x2 = x + 1

  Отсюда

                      x2 - x – 1= 0

  Корнями этого уравнения являются

                 х = 1( (5/2 = 1,61803398 .
                      45
                                      2
Это число обладает характернейшими особенностями. Обозначим это число
буквой Ф.

Ф = ((5 + 1)/2 = 1,618…; 1/Ф = ((5 – 1) /2 = 0,618…;

Ф2 = -((5 + 3)/2  = 2,618…
Оказывается, что геометрическая прогрессия, в основании которой

лежит Ф, обладает следующей особенностью: любой член этого

ряда равен сумме двух предшествующих ему членов. Ряд 1, Ф, Ф2,

Ф3, ..., Фn является одновременно и мультипликативным, и аддитив-

ным, т. е. одновременно причастен природе геометрической прогрес-

сии и арифметического ряда. Следует обратить внимание на то, что

формула.

                 Ф = ((5 + 1)/2

выражает простейшее асимметрическое деление прямой АВ. С этой

точки зрения данное отношение является «логической» инвариан-

той, проистекающей из счислений отношений и групп. Пеано,

Бертран Рассел и Кутюра показали, что  исходя  из  принципа  тождественности
можно вывести из этих отношений и групп принципы чистой математики.
  Любопытно, что древние архитекторы уже пользовались приемом

асимметричного деления. Так, например, стороны пирамиды Фараона

Джосера относятся друг к другу, как 2: /5, а ее высота относится  к  большей
стороне, как 1: 2.
   Интересно, что на сохранившемся до наших дней изображении

древнеегипетского зодчего Хисеры (жил свыше 4,5 тыс. лет тому

назад) имеются две палки — очевидно, эталоны меры. Их длины

относятся, как 1: 1/5, т. е. как меньшая сторона прямоугольного

треугольника к гипотенузе.
   Архитектор И. Шевелев рассматривая пропорции древнерусской

архитектуры (церковь Покрова на Нерли и храм Вознесения в

Коломенском) привел убедительные данные, свидетельствующие о

том, что русские архитекторы также пользовались пропорциями,

связанными с «золотым сечением».
   Пропорция «золотого сечения» дает возможность архитекторам

находить наиболее удачные, красивые, гармоничные сечения целого

и  частей,  единство  разнообразного;  в  конечном  счете   они   пользуются
сочетанием принципов симметрии и асимметрии,
  Если в период Возрождения внимание ученых и преподавателей

искусства было приковано к «золотому сечению», то впоследствии

оно постепенно падало, и только в 1855 г. немецкий ученый Цейзинг

вновь ввел его в обиход в своем труде

«Эстетические исследования». В нем он писал, что для того, чтобы

целое, разделенное на две неравные части, казалось прекрасным

с точки зрения формы, между меньшей и большей частями должно

быть то же отношение, что и между большей частью и целым,
Применение  «золотого  сечения»  есть  лишь  частный  случай  общего  закона
периодической повторяемости одной и той же пропорции

в совокупности, в деталях целого,
  Рассмотрение вопроса о «золотом сечении» приводит к выводу,

что здесь мы имеем дело с отображением средствами математики

(при помощи понятий симметрии и асимметрии) существующей

в природе пропорциональности.
   Все вышеизложенное позволяет утверждать, что взгляды Пифагора и его школы
содержали наряду с мистикой и идеализмом

и некоторые плодотворные математические и естественнонаучные

идеи.  Впоследствии  учение  пифагорейцев  получило  развитие  в   философии
крупнейшего представителя античного идеализма Платона.

Мир, утверждал Платон, состоит из правильных многоугольников,

обладающих  идеальной  симметрией.   Физические   тела   —   это   идеальные
математические сущности, составленные из треугольников,

упорядоченные демиургом.
   Отдельные интересные суждения о симметрии и гармонии мы

встречаем в работах многих философов и естествоиспытателей

(прежде всего Леонардо да Винчи, Лейбница, Декарта, Спенсера,

Гегеля и других). В значительной

степени прав немецкий ученый Венцлав Бодо, когда пишет, что

«философия, за исключением некоторых высказываний, не пыталась

дать объяснение этой интересной стороне природы. На протяжении

веков спорили о причинности, детерминизме и других вопросах,

не видя взаимосвязи их с проблематикой симметрии или не стремясь

к этому.  Симметрия,  по-видимому,  прибавлялась  только  как  искусственная
роскошь к довольно узкому готовому миру вещей с их

свойствами и силовыми взаимодействиями, их движениями и изменениями».



              Об определении категорий  симметрии и асимметрии



   В настоящее время в науке преобладают

определения  указанных  категорий  на  основе  перечисления   их   важнейших
признаков. Например, симметрия определяется как совокупность

свойств:   порядка,   однородности,    соразмерности,    пропорциональности,
гармоничности и т. д. Асимметрия же обычно определяется

как  отсутствие  признаков  симметрии,  как   беспорядок,   несоразмерность,
неоднородность и т. д. Все признаки симметрии в такого рода

ее определениях, естественно, рассматриваются как равноправные,

одинаково существенные, и в отдельных конкретных случаях при

установлении симметрии какого-либо явления можно пользоваться

любым из них. Так, в одних случаях симметрия — это однородность,

а в других — соразмерность и т. д. Очевидно, что по мере развития

нашего познания к определению симметрии можно прибавлять все новые  и  новые
признаки. Поэтому определения симметрии такого

рода всегда неполны.
   То же можно сказать и о существующих определениях  асимметрии.  Очевидно,
что в определениях понятий, сформулированных

по принципу перечисления свойств объектов, ими отражаемых,

отсутствует связь между перечисленными свойствами объектов.

Такие свойства симметрии, как, например, однородность и соразмерность,  друг
из  друга  не  следуют.  Сказанное,  однако,   не   означает   бесполезности
вышеуказанных определений  симметрии  и  асимметрии.  Наоборот,  они  весьма
полезны и необходимы. Без них

нельзя дать и более общее определение категорий симметрии

и асимметрии. На основе подобных эмпирических определений

симметрии и асимметрии развиваются определения более общего

характера, сущность которых — в соотнесении частных признаков

симметрии  и  асимметрии  к  определенным  всеобщим   свойствам   движущейся
материи. «В симметрии,— пишет А. В. Шубников,—

отражается та сторона явлений, которая соответствует покою, а в

дисимметрии (по нашей терминологии в асимметрии) та их

сторона, которая отвечает движению»
   Таким образом, все свойства симметрии рассматриваются как

проявления состояний покоя, а все свойства асимметрии — как

проявления состояний движения. Если признать это правильным,

то очевидно, что соотношение симметрии и асимметрии в таком

случае таково же, как  соотношение  покоя  и  движения.  Мы,  следовательно,
можем сказать, что симметрия относительна, а асимметрия

абсолютна. Симметрию мы должны,  далее,  рассматривать  как  частный  случай
асимметрии, как ее момент.  Поэтому  ни  о  каком  равноправии  симметрии  и
асимметрии и речи быть не  может.  Взаимоотношение  симметрии  и  асимметрии
здесь явно асимметрично. Но

вряд ли можно с таких позиций правильно понять многие свойства

симметрии и асимметрии. Почему, например,

такую симметрию пространства, как его однородность, должны

рассматривать как соответствующую покою? Почему мы должны  искать  симметрию
только среди покоящихся

явлений? Разве нет симметрии во  взаимодействии  и  движении  явлений  мира?
Мысль о связи между понятиями симметрии и асимметрии и соответственно  между
понятиями покоя и движения точнее

можно выразить как единство покоя и движения. Понятие сим-

метрии раскрывает момент покоя, равновесия в состояниях движения, а  понятие
асимметрии — момент движения, изменения в со стояниях покоя, равновесия.  Но
и  такой  формулировкой  не  охватывают  основные   признаки   симметрии   и
асимметрии. Например, симметрия  частиц  и  античастиц  и  их  ассиметрия  в
известной нам области мира не могут быть истолкованы  исходя  из  понятий  о
единстве покоя и движения. Вряд ли существование частиц и  античастиц  можно
рассматривать  как   момент   покоя   в   каком-то   движении   материи,   а
несоответствие числа частиц числу античастиц в известной нам области мира  —
как моменты движения в каком-то состоянии покоя. Можно сделать вывод, что  в
идее А. В. Шубникова о соотнесении симметрии с  покоем,  а  асимметрии  —  с
движением заключается только момент истины.
   Хорошо  известно,  что  понятие  симметрии  охватывает  и  такие  стороны
существования явлений, которые ничего общего с покоем не  имеют.  Например,
регулярная повторяемость тех или иных состояний движения,  их  определенная
периодичность является одним  из  признаков  симметрии,  но  к  покою,  она
никакого отношения не  имеет.  Такой  вид  асимметрии,  как  анизотропность
пространства, из свойств движения, конечно, выведена быть не может. Тем  не
менее многие свойства  симметрии  и  асимметрии  соответственно  связаны  с
покоем и движением.
   К общим определениям понятий симметрии и асимметрии можно подойти  исходя
из следующих положений:
   во-первых, нужно признать, что эти понятия относятся  ко  всем  известным
нам атрибутам материи, что они отражают взаимные связи между ними;
   во-вторых, эти понятия основываются на диалектике соотношения тождества и
различия, существующей  как  между  атрибутами  материи,  так  и  между  их
состояниями и признаками;
   в-третьих, нужно иметь в  виду,  что  единство  симметрии  и  асимметрии
представляет   собой   одну   из   форм   проявления   закона   единства   и
взаимоисключения противоположности. Правильность  этих  отправных  положений
может быть доказана как выводом их  из  многочисленных  частных  определений
симметрии  и  асимметрии,  так  и  правильностью   их   следствий,   т.   е.
необходимостью  и   всеобщностью   определений   симметрии   и   асимметрии,
полученных на их основе.
  Непосредственной логической основой для определения понятий  симметрии  и
асимметрии, на наш взгляд, является диалектика тождества и  различия.  Здесь
нужно отметить, что в диалектике тождество и различие  рассматриваются  лишь
в определенных  отношениях,  во  взаимодействии,  во  включении  различия  в
тождество, а тождества в различие.
  Тождество проявляется только в определенных отношениях и  в  определенных
процессах;  тождество  всегда  конкретно.  К   тождеству   можно   отнести:
равновесие,    равнодействие,    сохранение,    устойчивость,    равенство,
соразмерность, повторяемость и т. д.  Тождество не  существует  вечно:  оно
возникает, становится и развивается. Если дать его  общее  определение,  то
можно сказать, что оно представляет собой процесс  образования  сходства  в
различном и противоположном.
  Для  того,  чтобы  имело  место   тождество,   необходимо   существование
различного и противоположного.  Вне  различий  тождество  вообще  не  имеет
смысла, поэтому нельзя говорить о тождественном в тождественном, а только в
различном и противоположном.
   Характеризуя  диалектическое  понимание  тождества,  нужно  выделить  его
следующие   стороны:   тождество   не    существует    вне    различия    и
противоположности, тождество возникает  и  исчезает;  тождество  существует
только в определенных отношениях и  возникает  при  определенных  условиях,
наиболее  полным   выражением   тождества   является   полное   превращение
противоположностей  друг   в   друга.   Проявления   тождества   бесконечно
многообразны.   Поэтому   в   процессе   познания   явлений   мира   нельзя
ограничиваться только установлением тождества  между  ними,  но  необходимо
раскрывать то, как возникает это тождество, при каких условиях  и  в  каких
отношениях оно существует. Основываясь на  этой  характеристике  диалектики
тождества и различия, можно сформулировать следующие определения  симметрии
и асимметрии.

   Симметрия  —  это  категория,  обозначающая   процесс   существования   и
становления тождественных моментов в определенных условиях и в определенных
отношениях между различными и противоположными состояниями явлений мира.

      Действительно ли является всеобщим

сформулированное нами определение понятия симметрии, охватывает

ли оно все известные нам формы проявления симметрии как в объективном  мире,
так и в процессе нашего познания? Очевидно, что

при ответе на этот вопрос придется ограничиться только наиболее

общими характерными примерами. Представим себе  две  точки,  находящиеся  по
отношению к какой-то прямой на ее противоположных

сторонах; если эти противоположные точки равноудалены от этой

прямой, то о них говорят как о симметричных по отношению к

данной прямой. Если мы теперь совершим операцию перегиба, то

в результате наши точки полностью совпадут, сольются друг с другом,

следовательно, можно говорить об их полном тождестве. Симметрия

расположения данных точек указывает именно на то, при каком

процессе и при каких условиях они становятся тождественными.

Значит, этот вид симметрии полностью подходит под сформулирован-

ное определение симметрии. Как известно, существует определенная

симметрия между протоном и нейтроном; она выражается в том, что

в условиях сильных взаимодействий они не отличаются друг от друга,

становятся тождественными друг другу. Их симметрия и есть не что  иное,  как
образование тождества между этими различными части-

цами в процессе сильных взаимодействий. В понятии изотопического

спина как раз и выражаются моменты тождества, имеющиеся у

протонов и нейтронов, т. е. их симметрия в условиях сильного

взаимодействия. Но подходят ли под данное определение симметрии

такие общие симметрии пространства и времени, как, например, их

однородность?
  Однородность пространства означает, что по отношению к вза-

имодействиям явлений все места в пространстве тождественны и ни-

как не сказываются на характере взаимодействия. Тождествен-

ность всех мест в пространстве (точек в пространстве) по отноше-

нию к взаимодействиям явлений и есть их,строгая полная симметрия.

То же в общем виде можно сказать и об однородности времени.

Тождественность всех временных интервалов по отношению к взаимо-
 . действию явлений и есть их строгая и полная,симметрия. На наш

 взгляд, нельзя найти ни одного вида симметрии, который бы

 противоречил данному нами определению. Но это не значит, что

 данное определение симметрии является законченным и вполне

 строгим — видимо, будут необходимы какие-то его уточнения.
  Сформулированное определение понятия симметрии позволяет

распространить это понятие на все атрибуты материи, на все ее

состояния и структуры, а также на все типы связей и взаимодействий.

Так, группа преобразований Лоренца выражает существующую сим-

метрию во взаимосвязи пространства, времени и движения — этих

атрибутов материи'. Симметрия группы изотопического спина выра-

жает тождественные моменты по отношению к сильным взаимодей-

ствиям у частиц, участвующих в этих взаимодействиях.
В первом издании этой книги (1968) мы писали: «Поскольку

существуют различные взаимодействия, и даже во многих отноше-

ниях противоположные, как, например, сильные и слабые, то есте-

ственно допустить, что в них при определенных условиях возникают

и существуют тождественные моменты, т. е. им свойственна опреде-

ленная симметричность. Открытие такой симметрии было бы значи-

тельным шагом вперед в деле создания теории элементарных

частиц. В настоящее время связь между известными видами взаимо-

действия в физике еще не установлена, но можно предвидеть эти

связи исходя из принципа симметрии». Теперь эти связи между

сильным, слабым и электромагнитным взаимодействиями установле-

ны, и это действительно явилось важным звеном в развитии теории

элеменарных частиц. Хотелось бы высказаться против жесткого

разделения многообразных видов симметрии на геометрические и

динамические. Первые отражают свойства симметрии пространства и

времени, а вторые — свойства симметрии состояния взаимодействия.

Но  поскольку  пространство,  время,  движение  и  входящее   в   него   вза
имодействие внутренне связаны между собой, должна быть внут-

ренняя связь также между геометрической и динамической сим-

метриями. И она на самом деле существует. Так, симметрия равно-

мерного прямолинейного движения и покоя (одна из черт сим-

метрии группы Галилея), очевидно, не может быть охарактери-

зована только как динамическая или только как геометрическая.

В ней выражены свойства симметрии как пространства и времени',

так и состояния движения. Вообще любая симметрия в своей основе

имеет единство и взаимосвязь различных атрибутов материи. Правда,

не всегда эта взаимосвязь носит непосредственный характер, что

и создает возможность разделения видов симметрии на геометри-

ческие и динамические. Оба эти вида симметрии могут быть вы-

ражены и в динамической, и в геометрической форме. Так, группу

симметрии изотопического спина, которая обычно относится к дина-

мической симметрии, можно выразить и в геометрической форме;

ядерные взаимодействия инвариантны относительно поворотов в изо-

топическом пространстве. Из этой формулировки можно получить

ряд характеристик взаимодействия нуклонов, например, положение

о том, что ядерные силы между протоном и протоном и протоном

и нейтроном одинаковы, и ряд других. При изучении различных видов

симметрии весьма важно учитывать единство атрибутов материи, а

следовательно, и внутреннюю связь между симметриями их свойств

и состояний. Значение этого положения особенно ясно выступает

при изучении вопроса о взаимоотношении группы симметрии и зако-

нов сохранения.
   По этому вопросу существуют две точки зрения.
  Часть физиков (Берестецкий, Вигнер, Штейнман и др.) утверж-

дает, что фундаментом законов сохранения являются формы геомет-

рической симметрии, в то время как другие, наоборот, считают,

что законы сохранения определяют формы геометрической сим-

метрии.. Согласно первой точке зрения, например, однородность

времени определяет закон сохранения энергии, а согласно второй—

закон сохранения энергии определяет однородность времени. Мы

думаем, что обе точки зрения являются некоторой абсолютизацией

возможных подходов к проблеме. Наличие обеих точек зрения про-

явилось в том, что возникло мнение о разделении законов сохранения

на две группы: наиболее общие из них связаны с геометрическими

симметриями, а менее общие — с динамическими.
   Так, законы сохранения оказались разделенными на две группы:

кинематические (основанные на геометрических симметриях) и

динамические (основанные на динамических симметриях). К первой

группе относятся законы сохранения энергии, импульса, момента

импульса, ко второй — закон сохранения электрического заряда,

барионного числа, лептонного числа, изотопического спина и ряд

других.
Такое разделение законов сохранения в итоге основано на игно-

рировании  единства  атрибутов  материи   и   на   таком   следствии   этого
игнорирования, как противопоставление динамических и геоме-

трических симметрий друг другу. Непосредственной же предпосылкой

деления законов сохранения на две группы является убеждение,

что законы сохранения зависят от определенных симметрий.

Бесспорно, что между формами симметрии и законами сохранения

существует глубокая связь, но эту связь нельзя преувеличивать.

С определенными симметриями связаны не сами законы сохранения,"

а определенные формы их проявления. Так, известные нам формы

проявления закона сохранения энергии, конечно, связаны с однород-

ностью времени, но в целом этот закон может быть связан и с другими

геометрическими симметриями, пока нам не известными. Кроме того,

каждый закон сохранения связан и с,определенными формами

асимметрии, об этом подробнее будет сказано ниже.
   Формы симметрии и формы закона сохранения всегда взаимосвя-

заны, но в целом как симметрия, так и законы сохранения пред-

ставляют собой две различные, отнюдь не изолированные друг от

друга стороны единой закономерности мира.
   Перейдем теперь к характеристике необходимых предпосылок

для определения асимметрии.
   Как и для определения симметрии, так и для определения асим-

метрии непосредственной предпосылкой, основанием является диа-

лектика тождества и различия.
   Вместе с процессами становления тождества в различном и

противоположном происходят процессы становления различий и

противоположностей в едином, тождественном, целом. Если основой

симметрии можно считать возникновение единого, то основу асим-

метрии нужно полагать в раздвоении единого на противополож-

ные стороны. Понятие асимметрии, как и понятие симметрии,

применимо ко всем атрибутам материи и выражает их различие, их

особенность по отношению друг к другу. Поэтому взаимосвязь

атрибутов материи выражается не только симметрией, но и асиммет-

рией. Применимо понятие асимметрии и к различным состояниям

атрибутов материи и их взаимосвязи. Вообще говоря, где применима

симметрия, там применима и асимметрия, и наоборот.
   Исходя из сказанного можно дать следующее определение асим-

метрии: асимметрией называется категория, которая обозначает

существование и становление в определенных условиях и отношениях

различий и противоположностей внутри единства, тождества, цель-

ности явлений мира.
   Рассмотрим некоторые виды асимметрии.
Весьма общим видом асимметрии является однонаправленность

хода времени, полнейшая невозможность фактической замены

настоящего прошедшим или будущим, а будущего — прошедшим или

настоящим, в свою очередь прошедшего — настоящим и будущим.

Все эти три состояния времени не заменяют друг друга — в них

на первом плане находится различие. В них нет симметрии. Извест-

ная операция обращения времени, рассматриваемая  только  как  математический
прием, основана на том положении, что законы

движения обладают большей устойчивостью и в обозримых интерва-

лах не изменяются. Мы убеждены, что законы явлений мира яв-

ляются вечными и поэтому действуют во всех состояниях времени:

настоящем, прошедшем и будущем. Значит, операция обращения

времени имеет реальный смысл лишь постольку, поскольку в какой-то

мере наше убеждение в полной устойчивости, вечности законов

явлений мира отвечает действительности.
  Объективная диалектика обратимых и необратимых процессов

может быть выражена единством симметрии и асимметрии времени.

Необратимость является существенной характеристикой всякого раз-

вития: исходящая и нисходящая, прогрессивная и регрессивная

ветви развития сами по себе необратимы и асимметричны. Однако

соединенные общим и единым процессом развития, они с необходи-

мостью приводят к симметричным ситуациям: повторениям на ка-

чественно новых уровнях спиралеобразного движения.
   Особым вариантом понятий симметрии и асимметрии являются

понятия ритма и аритмии. Регулярная повторяемость подавляющего

большинства процессов в природе, их устойчивое чередование (в жи-

вой природе, например, упорядоченная во времени смена поколений,

в неживой природе — повторяющиеся космические процессы) позво-

ляет видеть в ритмических процессах одну из фундаментальных

симметрий природы, С другой стороны, аритмия — это одна из ха-

рактеристик объективной асимметрии, суть которой в нерегулярной

и случайной смене и чередовании процессов. Понятия ритма и арит-

мии могут быть экстраполированы на процесс развития, поскольку

асимметричное время как атрибут развития придает смысл ритму и

аритмии. Вне времени они просто лишены смысла.
   Симметрия обращения времени, таким образом, является резуль-

татом абстрагирования от изменчивости, присущей законам явлений

мира. И только в рамках применимости этой абстракции обращение

времени в уравнениях, выражающих законы движения, не противо-

речит действительности. В самом деле, в каких-то очень широких

пределах мы можем считать законы явлений мира вечными, а

следовательно, и допускать операцию обращения времени. Призна-

вая, что у нас сейчас нет никаких оснований утверждать, что в

действительности время может идти и от будущего к прошедшему,

все же в связи с высказанными выше положениями о единстве

атрибутов материи и о взаимопроникновении тождества и различия

напрашивается вопрос: если состояния времени глубоко различны,

то существует ли в каждом различии и тождество?
Время необратимо, его состояния не эквивалентны друг другу,

но, может быть, все же есть и моменты тождества между ними,

может быть, в необратимости времени есть и моменты его обра-

тимости, может быть, его состояния в каких-то отношениях

взаимозаменяемы, как взаимозаменяемы измерения пространства?

Мы думаем, что в различных состояниях времени есть и моменты  их  тождества,
а в общей его необратимости есть моменты его об-

ратимости. Не рассматривая далее этого вопроса, только отметим,

что должны же быть реальные, природные основания для возмож-

ности обратного хода времени в отражении объективных событий,

как, например, на киноленте кадры, движущиеся в обратном на-

правлении? То, что реально существует в отражении, должно иметь

моменты каких-то реальных прообразов и в том, что отражается.

Поэтому в математической модели позитрона как электрона, дви-

жущегося из будущего в прошедшее, есть, видимо, какой-то

реальный смысл. Вообще факты асимметрии так же многочисленны

и многообразны, как и факты симметрии.
   Асимметрия — такой же необходимый момент в структуре, в

изменении и во взаимосвязи явлений мира, как и симметрия. Асим-

метрия необходимо имеет место и в самой симметрии. Так, в сим-

метрии состояний покоя и равномерного прямолинейного движения

по отношению к законам движения есть все же асимметричность,

которая состоит в неравноправности этих их состояний и проявляется

в ряде различий между состояниями покоя и равномерного прямо-

линейного движения. У тела, покоящегося в данной системе отсчета

по отношению ко всем другим телам, покоящимся и движущимся

в этой же системе отсчета, скорость будет равна нулю, а у тела

движущегося скорость по отношению ко всем покоящимся и дви-

жущимся телам в данной системе отсчета будет иметь определенное

значение и только в частном случае равна нулю. Отсюда далеко

не полная эквивалентность состояний В практике  эта  асимметрия  проявляется
весьма резко — ведь

далеко не безразлично, движется ли поезд из Москвы к Ленинграду

или Ленинград движется навстречу поезду. Очевидно, что энергия

передается для передвижения поезда, а не расходуется на пере-

движение Ленинграда. Операция приближения поезда к Ленинграду

и  опе  а  ии  п  иближения  Ленинграда  к  поезду  не  эквивалентны  и   не
взаимозаменяемы.
  Весьма общими примерами асимметрии являются асимметрия

между фермионами и бозонами, асимметрия между реакциями

порождения и поглощения нейтрино, асимметрия спинов электронов,

асимметрия в прямых и обратных превращениях энергии.
  Уже из определений симметрии и асимметрии следует их не-

разрывное единство.
  Это обстоятельство в какой-то мере подчеркнуто А. В. Шубни-

ковым: «Какой бы трактовки симметрии мы ни придерживались, одно

остается обязательным: нельзя рассматривать симметрию без ее

антипода — дисимметрии» (29, 162).
   По нашему мнению, более точным является название не «принцип

симметрии», а принцип единства симметрии и асимметрии.
Во всех реальных явлениях симметрия и асимметрия сочетаются

друг  с  другом.  И  надо  думать,  что  во  всех  правильных,  т.  е.  соот
ветствующих действительности, научных обобщениях имеют место

не просто те или иные симметрии или асимметрии, а определенные

формы их единства.
  Так, в группах преобразования Галилея и Лоренца наряду с чер-

тами симметрии существуют и черты асимметрии.
  Например, в преобразованиях Галилея и Лоренца симметричны

все состояния покоя и равномерного прямолинейного движения,

но асимметричны состояния покоя и ускоренного движения.
   Задача нахождения единства симметрии и асимметрии каких-

либо явлений сводится к нахождению таких групп операций,

в которых раскрывается как тождественное в различном, так и

различное в тождественном. Поэтому прежде чем поставить задачу

нахождения симметрии в данном явлении или совокупности явле-

ний по отношению к каким-то группам операций, необходимо

установить различия между сторонами данного явления или между

явлениями в их совокупности, так как симметрия представляет собой

наличие тождества не вообще, а только в различном. Если же мы

имеем совокупность абсолютно тождественных явлений, то никакой

симметрии в этой совокупности по отношению к любой группе

операции быть не может.
  Значит, прежде чем искать симметрию, нужно найти асимметрию.

Прежде чем была установлена симметрия протонов и нейтронов по

отношению к сильным взаимодействиям, было установлено разли-

чие между ними, их определенная асимметричность по отношению

к электромагнитным взаимодействиям. Частицы и античастицы асим-

метричны потому, что в противоположности между ними имеются

тождественные моменты, в силу чего они и являются зеркальными

отражениями друг друга. Единство симметрии и асимметрии заклю-

чается и в том, что они предшествуют одна другой.
  Диалектическое единство, присущее объективным процессам сим-

метрии и асимметрии, позволяет выдвинуть в качестве одного из

принципов познания принцип диалектического единства симметрии

и асимметрии, согласно которому всякому объекту присуща та или

иная форма единства симметрии и асимметрии. Причем рассмотрение

данного объекта в генезисе выражается в переходе от симметрии к

асимметрии (или наоборот). Заметим, что данный процесс тождест-

вен смене конкретных форм единства симметрии и асимметрии.
   Как известно, в объективной действительности не может иметь

места абсолютное единство противоположностей. Именно поэтому

отношение конкретного тождества, т. е. тождества, ограниченного

различиями, и является объективным аналогом гносеологическо-

го единства симметрии и асимметрии.
Всякий принцип познания воплощается в конкретный метод, ору-

дие и средство познающей деятельности. Таким методом может быть

метод перехода от симметрии к асимметрии (или наоборот). Он

позволяет осуществлять объясняющую и предсказывающую функ-

ции в развивающемся знании, а также  в  определенной  мере  опти  мизировать
поисковую деятельность. Этот метод оказывается тесно

связанным с методами сходства и различия, предвидения и гипотезы,

аналогии, экстраполяции.
   Если принять за симметрию теоретической системы ее непроти-

воречивость, себетождественность и инвариантность по отношению

к описываемым объектам и явлениям, то развитие научного знания

можно определить как переход к симметрии (т. е. асимметрия- сим-

метрия). В этом случае симметрия выступает как идеализированная

цель познания. Поиск симметрии — это поиск единого и тождествен-

ного в том, что первоначально виделось различныМ, разобщенным.

Всякая более высокая симметрия реализует возможность переноса

научной теории для решения новых познавательных задач.
   Упрощая в некоторых случаях теоретические системы, симмет-

рия совсем не обязательно выступает аналогом простоты научного

знания. Поиск новых форм симметрии интуитивно связан со стрем-

лением к порядку, гармонии. Однако нет достаточных оснований

для возведения антропоморфных понятий простоты и красоты тео-

рии в ранг методологических закономерностей (31. 1979. 12, 49 — 60).
   Простота и красота — особые варианты симметрии, связанные

с рациональным и эмоциональным (образным) способами постиже-

ния человеком объективного мира. Абсолютизация роли этих понятий

в развивающемся знании представляется нам необоснованной,

поскольку связана с отрывом симметрии от своей диалектической

противоположности — асимметрии.
  Асимметрия в познании проявляется как несоответствие тео-

рии и эксперимента, как взаимная противоречивость нескольких

независимых теорий, либо как их внутренняя противоречивость.

Асимметрия служит исходным пунктом в познании, на каждом из

этапов его развития; именно с ней связан процесс научного поиска

истины.
   Асимметрия неоднократно играла эвристическую роль в познании.

Примерами являются; эпикурейское представление об отклонении

атомов от прямолинейного движения, несогласие Кеплера с симмет-

рией движения планет по Копернику и др. История науки свиде-

тельствует о том, что именно асимметрия обусловливает появление

в познании новой формы симметрии, которая и выступает в качестве

относительной истины.
  Во взаимосвязи с принципом единства симметрии и асимметрии

находится принцип симметрии, согласно которому всякая научная

теория должна быть непротиворечивой и инвариантной отно-

сительно группы описываемых объектов и явлений. Симметрия

теории выражает также адекватность научного познания объектив-

ной действительности. Многие видные ученые (П. Дирак, П. Кюри,

Л. Пастер, А. Пуанкаре, А. Салам) интуитивно использовали прин-

цип симметрии при получении важных теоретических результатов.
Однако принцип симметрии  не  учитывает  того  обстоятельства,  что  всякой
научной  теории  присущи  внутренние  (не  логические,   а   диалектические)
противоречия, а также недостатки, не говоря уже

о действительном или возможном существовании объектов, которые

'она описать не в состоянии. Отрицая, по сути дела, роль асимметрии

(признается только нарушение симметрии), данный принцип не

учитывает особенностей научного познания как процесса развития и

становления.
   К ограниченности принципа симметрии следует отнести и то,

что он связан только с выявлением тождественных отношений среди

различных объектов. Между тем в познании не менее широко исполь-

зуется и противоположная процедура — нахождение различного и

противоположного среди тождественных объектов и явлений.
  Несомненный интерес представляет статья немецкого философа

Герберта Герца, в которой он рассматривает роль симметрии и

асимметрии в теории элементарных частиц. Он справедливо утвер-

ждает, что «ни одна будущая теория (элементарных частиц.— В. Г.)

не может обойти проблему асимметрии. Из философских сообра-

жений все процессы в мире следует рассматривать как единство

симметрии и асимметрии» (183. 1963. 10; 227; 289). Автор считает, что

применение категорий симметрии и асимметрии, очевидно, приведет

к возникновению новых воззрений в диалектике природы.


   -





смотреть на рефераты похожие на "Симметрия и асимметрия"