МатематикаМеханические колебания в дифференциальных уравнениях
Министерство образования Российской Федерации
Магнитогорский государственный технический университет им. Г.И. Носова
РЕФЕРАТ
на тему:
“МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ В ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЯХ”
Выполнил: студент гр. МХТ-02
Казаков Василий Васильевич
Проверила:
Абрамова Ирина Михайловна
Магнитогорск 2003
Содержание
1) Гармонические колебания
2) Затухающие колебания
3) Вынужденные колебания без учета сопротивления среды
4) Вынужденные колебания с учетом сопротивления среды
Колебаниями называются процессы, которые характеризуются определенной
повторяемостью во времени. Колебательные процессы широко распространены в
природе и технике, например качания маятника часов, переменный
электрический ток и т.д. При колебательном движении маятника изменяется
координата центра масс, в случае переменного тока колеблются напряжение и
сила тока. Физическая природа колебаний может быть разной, однако различные
колебательные процессы описываются одинаковыми характеристиками и
одинаковыми уравнениями. Рассмотрим механические колебания.
Гармонические колебания.
Гармоническими колебаниями называются колебания, при которых
изменяющаяся величина изменяется по закону синуса (косинуса).
Пусть груз весом Р подвешен на вертикальной пружине, длина которой в
естественном состоянии равна [pic]. Груз слегка оттянут книзу и затем
отпущен. Найдем закон движения груза, пренебрегая массой пружины и
сопротивлением воздуха.
Решение
Направим ось Ох вниз по вертикальной прямой, проходящей через точку
подвеса груза. Начало координат О выберем в положении равновесии груз, то
есть в точке, в которой вес груза уравновешивается силой натяжения пружины.
Пусть ( означает удлинение пружины в данный момент, а (ст—статическое
удлинение, т.е. расстояние от конца нерастянутой пружины до положения
равновесия. Тогда (=(ст+х, или (-(ст=х.
Дифференциальное уравнение получим из второго закона Ньютона: F=ma,
где m=P/g—масса груза а—ускорение движения и F—равнодей-ствующая
приложенных к грузу сил. В данном случае равнодействующая слагается из силы
натяжения пружины и силы тяжести.
По закону Гука сила натяжения пружины пропорциональна её удлинению:
Fупр=-с(, где с – постоянный коэффициент пропорциональности называемый
жесткостью пружины.
[pic]
Так как в положении равновесия сила равновесия сила натяжения пружины
уравновешивается весом тела, то P= с(ст. Подставим в дифференциальное
уравнение выражение Р и заменим (-(ст через х, получится уравнение в виде:
[pic]
или, обозначив с/m через k2,
[pic] (1)
Полученное уравнение определяет так называемые свободные колебания
груза. Оно называется уравнением гармонического осциллятора. Это линейное
дифференциальное уравнение второго порядка с постоянными коэффициентами.
Его характеристическое уравнение:
[pic]
имеет мнимые корни [pic], соответственно этому общее решение
[pic]
Для выяснения физического смысла решения удобнее привести его к другой
форме, введя новые произвольные постоянные. Умножив и разделив на [pic],
получим:
[pic]
Если положить
[pic] [pic] [pic]
то
[pic] (2)
График гармонических колебаний имеет вид:
[pic]
Таким образом, груз совершает гармонические колебания около положения
равновесия.
Величину А называют амплитудой колебания, а аргумент [pic] — фазой
колебания. Значение фазы при t=o т.e. величина [pic], называется
начальной фазой колебания. Величина [pic] есть частота колебания. Период
колебания [pic] и частота k зависят только от жесткости пружины и от массы
системы. Так как с = Р/(ст = mg/(ст, то для периода можно получить также
формулу:
[pic]
Скорость движения груза получается дифференцированием решения по t:
[pic]
Для определения амплитуды и начальной фазы необходимо задать начальные
условия. Пусть, например, в начальный момент t = 0 положение груза x=x0 и
скорость (=(0. Тогда [pic] [pic], откуда
[pic], [pic]
Из формул для амплитуды и начальной фазы видно, что в отличие от
частоты и периода собственных колебаний они зависят от начального состояния
системы. При отсутствии начальной скорости ((0=0) амплитуда А=х0, а
начальная фаза (=(/2 и, таким образом,
[pic] или [pic]
Затухающие колебания.
Затухающими колебаниями называются колебания, амплитуды которых из-за
потерь энергии реальной колебательной системой с течением времени уменьшают-
ся. Найдем закон движения груза в условиях предыдущей задачи, но с учетом
сопротивления воздуха, которое пропорционально скорости движения.
Решение
К силам, действующим на груз, прибавляется здесь сила сопротивления
воздуха [pic] (знак минус показывает, что сила R направлена противоположно
скорости (). Тогда дифференциальное уравнение движения в проекции на ось Ox
имеет вид
[pic]
или если положить [pic], [pic], то
[pic] (3)
Это уравнение также является линейным однородным уравнением второго
порядка с постоянными коэффициентами. Его характеристическое уравнение:
[pic]
имеет корни
[pic] (4)
Характер движения целиком определяется этими корнями. Возможны три
различных случая. Рассмотрим сначала случай, когда [pic]. Это неравенство
имеет место, когда сопротивление среды невелико. Если положить [pic], то
корни (4) имеют вид [pic]. Тогда общее решение можно записать в виде
[pic]
или, преобразовав, умножая и деля на [pic], получим:
[pic]
положим, что
[pic] [pic] [pic],
тогда
[pic] (5)
График зависимости отклонения от положения равновесия от времени
имеет вид:
[pic]
Если заданы начальные условия: [pic] при t = 0, то можно определить А
и (. Для этого находим
[pic]
и подставляем t = 0 в выражения для [pic]и [pic] получим систему
уравнений
[pic]
Разделелив обе части второго уравнения на соответствующие части
первого получим
[pic]
откуда
[pic] или [pic] а [pic]
Так как
[pic]
то
[pic]
Решение (5) показывает, что имеют место затухающие колебания. Действии-
тельно, амплитуда колебания [pic] зависит от времени и является монотонно
убывающей функцией, причем [pic] при [pic].
Период затухающих колебаний определяется по формуле
[pic]
Моменты времени, в которые груз получает максимальное отклонение от
начала координат (положения равновесия), образуют арифметическую прогрессию
с разностью, равной полупериоду Т/2. Амплитуды затухающих колебаний
образуют убывающую геометрическую прогрессию со знаменателем, равным [pic]
или [pic]. Эта величина называется декрементом затухания и обычно
обозначается буквой D. Натуральный логарифм декремента lnD = - пТ/2
называется логарифмическим декрементом затухания.
Частота колебаний [pic]в этом случае меньше, нежели в предыдущем
([pic]), но, как и там, не зависит от начального положения груза.
Если сопротивление среды велико и [pic], то, положив [pic], получим
корни (4) в виде [pic] Так как [pic], то оба корня отрицательны. Общее
решение уравнения в этом случае имеет вид
[pic] (6)
Отсюда видно, что движение апериодическое и не имеет колебательного
характера. Аналогичный характер будет иметь движение и в случае [pic],
когда общее решение имеет вид
[pic] (7)
Легко заметить, что в обоих последних случаях при [pic] имеем
[pic].
Если заданы начальные условия [pic] и [pic], то в случае, когда [pic],
имеем [pic], а [pic]. Решая эту систему относительно [pic] и [pic], получим
[pic], [pic]
и, следовательно
[pic]
[pic]
В случае же, когда [pic], получаем [pic], [pic] и следовательно,
[pic]
Вынужденные колебания без учета сопротивления среды.
Вынужденными колебаниями называют колебания, вызванные внешней
периодической возмущающей силой.
Пусть груз весом Р подвешен на вертикальной пружине, длина которой в
ненагруженном состоянии равна [pic]. На груз действует периодическая
возмущающая сила [pic] где Q и р — постоянные. Найдем закон движения груза,
пренебрегая массой пружины и сопротивлением среды.
Решение
Как и для гармонических колебаний, получаем уравнение
[pic]
Полагая, как и прежде, [pic] и, кроме того, [pic] перепишем уравнение в
виде
[pic] (8)
Это—неоднородное линейное уравнение второго порядка с постоянными
коэффициентами, причем однородным уравнением, соответствующим уравнению
(8), является (1). Поэтому [pic]; остается найти х. Если предположить, что
[pic], то частное решение х, нужно искать в виде [pic], где М и N —
коэффициенты, подлежащие определению. Итак,
[pic][pic]
Производя вычисления, получаем
[pic] [pic]
откуда М=0 и [pic] Полученное таким образом частное решение
[pic] (9)
определяет так называемые вынужденные колебания, созданные возмущаю-
щей силой [pic]. Вынужденные колебания, имеют тот же период, что и
возмущающая сила, совпадают с ней по фазе (т. е. имеют одинаковую начальную
фазу) при k>p, либо отличаются на (, если k