Математика

Геометрия




-----------------------
БИЛЕТ   6  Отрезки параллельных прямых, заключенные м/у параллельными
плоскостями, равны.



Для док-ва рассмотрим отрезки АВ и СD двух параллельных прямых, заключенные
м/у параллельными плоскостями ( и (. Докажем, АВ=СD. Плоскость (,
проходящая ч/з параллельные прямые АВ и СD, пересекается с плоскостями ( и
( по параллельным прямым АС и ВD. Таким образом, в четырехугольнике ABDC
противолеж. стор. паралл., т.е. ABDC-параллел-м
Но в пар-ме прот. леж. стороны равны, значит AB=CD.

 Sп.п.=2(R(H+R)



БИЛЕТ   5  Если две параллельные плоскости пересечены третьей, то линии их
пересечения параллельны.



Для док-ва данного св-ва рассмотрим прямые а и b , по которым параллельные
плоскости ( и ( пересекаются с плоскостью (. Докажем, что а( ( b.
Эти прямые лежат в одной плоскости (() и  не пересекаются. В самом деле,
если бы прямые а и b пересекались, то пл. ( и ( имели бы общ. точку, что
невозможно, т.к. (( ( (. Итак, прямые а и b лежат в одной плоскости и не
пересекаются, а( ( b.

 2. Vпирамиды= 1/3*Sосн.*H



БИЛЕТ   4   ОПРЕДЕЛЕНИЕ. Две плоскости называются параллельными, если они
не пересекаются.
ТЕОРЕМА. Если две пересекающиеся прямые одной плоскости соответственно
параллельны двум прямым другой плоскости, то эти плоскости параллельны.
                                            Док-во: Рассмотрим

                                           две плоскости ( и (. В
                                           плоскости ( лежат
                                           пересекающиеся в т.М
                                           прямые a и b,  а в ( -
                                           - прямые а1 и b1,
                                           причем а( ( а1 и b( ( b1.
                                           Докажем, что плоскос.
                                           -ти ( и ( не параллель
                                           ны. Тогда они перес.
                                           по прямой с. Мы получили, что
плоскость ( проходит ч/з прямую  а, параллельную плоскости (, и пересекает
плоскость ( по прямой с. Отсюда следует, что
а( ( с.
   Но плоскость ( проходит также ч/з прямую b, параллельную плоскости (.
Поэтому b ( ( с. Таким обр. ч/з т.М проходят две прямые а и b, ( ( с. Но
это невозможно, т.к. по теореме о параллельных прямых ч/з т. М проходит
только одна прямая ( ( с.
Значит, наше допущение неверно  и (( ( (.   Ч.Т.Д.

   -  -   -   -   -   -   -   -



БИЛЕТ   3   ОПРЕДЕЛЕНИЕ. Прямая и плоскость
называются параллельными, если они не имеют общих точек.
ТЕОРЕМА. Если прямая, не принадлежащая плоскости, параллельна какой-нибудь
прямой в этой плоскости, то она параллельна и  самой плоскости.
                                  Док-во: Пусть (-плоскость,
                                  а - не лежащая в ней прямая
                                  и а1 - прямая в плоскости (,
                                  параллельная прямой а.
                                  Проведем плоскость (1 ч/з
                                                прямые а и а1.
                                                Она отлична от (,
                                             т.к. прямая а не ле-
                                      жит в плоскости (. Плоскости ( и (1
пересекаются по прямой а1. Если бы прямая а пересекала плоскость (, то
точка пересечения принадлежала бы прямой а1. Но это невозможно, т.к. прямые
а и а1 параллель-
ны. Итак, прямая а не пересекает плоскость (, а значит, параллельна
плоскости (.        Ч.Т.Д.



2. Vпараллелепипеда= Sосн.*H



БИЛЕТ   2   ОПРЕДЕЛЕНИЕ. Две прямые в пространстве называются
параллельными, если они лежат в одной плоскости и не пересекаются.
ТЕОРЕМА. Через точку пространства, не лежащую на данной прямой, проходит
прямая, параллельная данной, и притом  только одна.
                                        Док-во:  проведем ч/з а и

                                        М плоскость (, а ч/з М в

                                        в плоскости ( прямую
                                        b( ( a. Докажем, что b( ( a
                                        единственна.

Допустим, что существует другая прямая b2( ( a, и
проходящая ч/з т.М. Через b2 и а можно провести
плоскость (2, которая проходит ч/з М и а, след-но,
по Т.14.1(ЧЕРЕЗ ПРЯМ. И ТОЧКУ НЕ ЛЕЖ. НА
ЭТОЙ ПРЯМОЙ МОЖНО ПРОВЕСТИ ПЛОСКОСТЬ И ПРИТОМ ТОЛЬКО ОДНУ) она
совпадает с (. По аксиоме о параллельных
прямых b2 и а совпадают.         Ч.Т.Д.



2. Vус.кон.=1/3*(H(R12+R1R2+R22)



БИЛЕТ   1   А1  Какова бы ни была  плоскость, существуют точки
принадлежащие этой плоскости
                               и точки, не принадлежащие ей.



А2  Если две различные плоскости имеют общую
       точку, то они пересекаются по прямой.



А3 Если две различные прямые имеют общую
      точку, то ч/з них можно провести плоскость, и
      притом только одну.



2. Sп.п.=Sбок.+Sосн.;   Sбок.=Pосн.*A



БИЛЕТ   7  Сформулируем основные св-ва параллельного проектирования при
условии, что проектируемые отрезки и прямые не параллельны прямой L.
10 Проекция прямой есть прямая.



20 Проекция отрезка есть отрезок.
30  Проекции параллельных отрезков - параллельные отрезки или отрезки,
принадлеж.
одной прямой.
40 Проекции параллельных отрезков, а также проекции отрезков, лежащих на
одной прямой, пропорциональны самим отрезкам.

Из св-ва 40 следует, что проекция середины отрезка есть середина проекции
отрезка.



 -  -  -  -  -  -  -  -  -  -  -  -



БИЛЕТ   9  ТЕОРЕМА: Прямая, проведенная в плоскости ч/з основание наклонной
перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой
наклонной
                                             Док-во: AH - перпенд.
                                             к плоскости (, AM -
                                             наклонная, а - прямая
                                             проведенная в плоск.
                                             ( ч/з точку M перпенд
                                             к проекцииHM
                                             наклонной.
                                                 Рассмотрим плоск.
                                             AMH. Прямая а(этой
                                             плоскости, т.к. она (
                                             к двум пересекающимся прямым
AH и MH. Отсюда след.
что прямая а перпендикулярна к любой прямой, лежащей в плоскости AMH, в
частности а(AM.
                              Ч.Т.Д.



  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



БИЛЕТ   8  Определение. Прямая называется перпендикулярной к плоскости,
если она перпендикулярна к любой прямой, лежащей в этой плоскости.

ТЕОРЕМА: Если прямая перпендикулярна к двум пересекающимся прямым, лежащим
в плоскости, то она перпендикулярна к этой плоскости.



   Sсеч.=2(RH


 Sшар.сег.=2(RH



БИЛЕТ   11   ТЕОРЕМА: Если две прямые перпендикулярны плоскости, то они
параллельны.
Док-во: Рассмотрим прямые а и b, перпендикулярные к плоскости (. Докажем,
что а((b.
Через какую-нибудь точку М прямой ( проведем прямую (1, параллельную прямой
(. Докажем, что прямая (1 совпадает с прямой (. Тем самым будет доказано,
что ((( (. Допустим, что прямые ( и (1 не совпадают. Тогда в плоскости (,
содержащей прямые ( и (1, ч/з точку М проходят две прямые, перпендикулярные
к прямой (, по которой пересекаются плоскости ( и (. Но это невозможно,
след-но, ((( (.        Ч.Т.Д.



 - - - - - - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - -



БИЛЕТ   12     ОПРЕДЕЛЕНИЕ: Две пересекающиеся плоскости называются
перпендикулярными, если угол м/у ними равен 900.
ТЕОРЕМА: Если одна из двух плоскостей проходит ч/з прямую,перпендикулярную
к др.
плоскости, то такие плоскости перпендикулярны.
Док-во: Рассмотрим плоскости ( и ( такие, что плоскость ( проходит ч/з
прямую АВ, перпендикулярную к плоскости ( и пересекающуюся с ней в точке А.
Докажем, что (((. Плоскости ( и ( пересекаются по прямой АС, причем АВ(АС,
Т.к. по усл. АВ((, и, значит, прямая АВ( к любой прямой, лежащей в
плоскости (.
  Проведем в плоскости ( прямую  АD,(АС. Тогда (BAD - линейный угол
двугранного угла, образованного при пересечении плоскостей ( и (. Но
(BAD=900 (т.к. AB((). След-но, угол м/у плоскостями ( и ( равен 900, т.е.
(((.      Ч.Т.Д.



  Sбок=P*a (а - бок. ребро, Р-периметр)



БИЛЕТ   10     ТЕОРЕМА: Если одна из двух параллельных прямых
перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой
плоскости.



Док-во: Рассмотрим две параллельные прямые а и а1 и плоскость (, такую, что
а((. Докажем, что и а1((.
 Проведем какую-нибудь прямую х в плоскости (.
Так как а((, то а(х. Таким образом, прямая а1 перпендикулярна к любой
прямой, лежащей в плоскости (, т.е. а1((.    Ч.Т.Д.



   Vпаралл-да=abc=Sосн.*H



БИЛЕТ   13   ОПРЕДЕЛЕНИЕ:  Расстояние м/у одной из скрещивающихся прямых и
плоскостью, проходящей ч/з другую прямую параллельно первой, называется
расстоянием м/у скрещивающимися прямыми.



 Sполн=Sбок+2Sосн        ;    Sбок=P*H(ребро)


БИЛЕТ   14     ОПРЕДЕЛЕНИЕ: Если боковые ребра призмы перпендикулярны к
основаниям, то призма называется прямой, в противном случае наклонной.
ТЕОРЕМА: Площадь боковой поверхности прямой призмы равна произведению
периметра основания на высоту призмы.
Док-во: Бок.грани прямой призмы - прямоугольники, основания которых -
стороны основания призмы, а высоты равны высоте h призмы. Площадь боковой
поверхности призмы равна сумме площадей указанных прямоугольников, т.е.
равна сумме произведений сторон основания на высоту h. Вынося множитель h
за скобки, получим в скобках сумму сторон основания призмы, т.е. его
периметр Р. Итак, Sбок=P*h.                  Ч.Т.Д.



   - - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - -



БИЛЕТ   15  Рассмотрим два равных параллелограмма ABCD и A1B1C1D1,
расположен-
ных в плоскостях так, что отрезки AA1,BB1,CC1, и
DD1 параллельны.
Поверхность составленная из двух равных параллелограммов ABCD и A1B1C1D1 и
четырех параллелограммов называется параллелепипедом м обозначается
ABCDA1..D1.
  Параллелограммы, из которых составлен параллелепипед, называются гранями,
их стороны - ребрами, а вершины параллелограммов - вершинами
параллелепипеда.

ТЕОРЕМА: Диагонали параллелепипеда пересекаются в одной точке и делятся
этой точкой пополам.
Док-во: Рассмотрим четырехугольник  A1D1CB, диагонали которого являются
диагоналями параллелепипеда ABCDA1..D1. Т.к. A1D1(( BC и
A1D1=BC, то A1D1CB  - параллелограмм. Поэтому диагонали A1C и D1B
пересекаются в некоторой точке О и этой точкой делятся пополам.



  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



БИЛЕТ   18   Рассмотрим многоугольник A1A2..An
и точку P не лежащую в плоскости этого многоугольника. Соединив точку P
отрезками с вершинами многоугольника, получим n треуголь-
ников:  PA1A2,PA2A3,...,PAnA1.
Многогранник, составленный из n-угольника A1A2..An и n треугольников,
называется пирамидой

Многоугольник A1A2..An называется основанием, а треугольники - боковыми
гранями пирамиды. Точка P называется вершиной пирамиды, а отрезки PA1, PA2,
..., Pan - ее боковыми ребрами.

ТЕОРЕМА: Плоскость, параллельная основанию пирамиды и пересекающая ее,
отсекает подобную пирамиду.
                                   Док-во: S-вершина пирамид
                                   A - верш.основания и A1 -
                                   точка пересечения секущей
                                   плоскости с боковым ребр.
                                   SA. Подвергнем пирамиду
                                   преобразованию гомотетии
                                   относительно вершины S с
                                   коэф. гомотет. k=SA1/SA
При этом плоск-ть основания переходит в паралл. плоск-ть, проходящую ч/з
точку A1, т.е. в секущую
плоскость, а след-но, вся пирамида - в отсекаемую это плоскостью часть.
Т.к. гомотет. есть преобразование подобия, то отсек. часть явл
пирамид., подобной данной.   Ч.Т.Д.

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



БИЛЕТ   17  ОПРЕДЕЛЕНИЕ: Параллелепипед называется прямоугольным , если его
боковые ребра перпендикулярны к основанию, а основания представляют собой
прямоугольники.

ТЕОРЕМА:  Квадрат диагонали прямоугольного параллелепипеда равен сумме
квадратов трех его измерений.
                                                Док-во: Докажем,


                                                что
                                               AC12=AB2+AD2+AA12
                                                Так как ребро CC1
                                                перпендикулярно
                                                к основанию ABCD,
                                                то (ACC1-прямой.
                                                Из прямоугольного
                                                треугольника ACC1
                                                по теореме Пифагора
получаем  AC12=AC2+CC12.
  Но AC -диагональ прямоугольника ABCD, поэтому AC2=AB2+AD2. Кроме того,
CC1=AA1.
След-но   AC12=AB2+AD2+AA12            Ч.Т.Д.



 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



БИЛЕТ   16  ТЕОРЕМА: Противолежащие грани параллелепипеда параллельны и
равны.



Док-во: Докажем равенство граней ABB1A1 и DCC1D параллелепипеда ABCA1..D1.
Т.к. ABCD и ADD1A1 - параллелограммы, то AB((DC и AA1((DD1. Таким обр., две
пересекающиеся прямые AB и AA1 одной грани соответственно параллельны двум
прямым CD и DD1 другой грани. Отсюда по признаку параллельности плоск.
следует, что грани ABB1A1 и DCC1D1 параллельны.
 Докажем равенство этих граней. Т.к. все грани параллелепипеда -
параллелограммы, то AB=DC и AA1=DD1. По той же причине стороны углов A1AB и
D1DC  соответственно сонаправлены, и, значит, эти углы равны. Таким обр.,
две смежные стороны и ( м/у ними паралл-ма ABB1A1 соотв.
равны двум смежным сторонам у ( м/у ними пар-ма DCC1D1, поэтому эти
параллелограммы равны



БИЛЕТ   22  ТЕОРЕМА: Объем конуса равен одной трети произведения площади
основания на высоту.
                                    Док-во: Рассмотрим конус

                                    с объемом V. Произвольн.
                                    сечение конуса плоскостью
                                    перпендикулярной к оси Ox,
                                    является кругом с центром
                                    в т.M1 пересечения этой
                                    плоскости с осью Ox.
                                    Обозначим радиус этого
                                    круга ч/з R1, а площадь
                                    сечения ч/з S(x), где x-
                                    - абсцисса точки M1. Из
                                    подобия прямоугольных
треугольников OM1A1 и OMA следует, что
OM1/OM=R1/R, или x/h=R1/R, откуда R1=xR/h.
  Так как S(x)=(R12, то S(x)=(R2x2/h2.
  Применяя основную формулу для вычисления объемов тел получаем:

Площадь S основания конуса равна (R2, поэтому
V=1/3Sh                 Ч.Т..Д.



 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



БИЛЕТ   21   За площадь боковой поверхности цилиндра принимают площадь ее
развертки.



Так как площадь прямоугольника ABB1A1 равна AA1*AB=2(rh, то для вычислений
площади боковой поверхности цилиндра радиуса r и высоты h получается
формула Sбок=2(rh
  Итак, площадь боковой поверхности цилиндра равна произведению длины
окружности основания на высоту цилиндра.



 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



БИЛЕТ   20   ТЕОРЕМА: Объем призмы равен произведению площади основания на
высоту.
Док-во: 1)  Рассмотрим прямую треуг. призму
                                 ABCA1B1C1  с объемом V и
                                 высотой h. Проведем такую
                                 высоту треугольника ABC
                                 отрез.BD, которая разделяет
                                 этот треуг. на два треуг.
                                 Плоскость BB1D разделяет
                                 данную призму на две  приз.,
                                 основаниями которых явл.
прямоугольные треуг.  ABD и BDC. Поэтому объемы V1 и V2 этих призм
соответственно равны
Sabdh и Sbdch. V=V1+V2, т.е.  V=Sabdh+Sbdch=
=(Sabd+Sbdc)h. Таким обр., V=Sabch
              2) Докажем теорему для произвольной
                                 призмы с высотой h и площ.
                                 основания S. Такую призму
                                 можно разбить на прямые
                                 треуг. призмы с высотой h.
                                 Выразим объем каждой приз.
                                 по формуле (1) и сложим эти
                                 объемы. Вынося за скобки
                                 множитель h, получим в

                                 скобках сумму площадей
оснований треугольных призм, т.е площадь S основания исходной призмы. Таким
образом,  объем призмы равен Sh.           Ч.Т.Д.



 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



БИЛЕТ   19  ТЕОРЕМА: Площадь боковой поверхности правильной пирамиды равна
половине произведения периметра основания на апофему.
Док-во: Боковые грани правидьной пирамиды - равные равнобедренные
треугольники, основания которых - стороны основания пирамиды, а высоты
равны апофеме. Площадь S боковой поверхности пирамиды равна сумме
произведений сторон основания на половину апофемы d. Вынося множитель 1/2*d
за скобки, получим в скобках сумму сторон основания пирамиды, т.е. его
периметр.                          Ч.Т.Д.



 - - - - - - - - - - - - - - - - -  - - - - - - - - - - - - - - - - - -





смотреть на рефераты похожие на "Геометрия"