Оптоволоконный лазер для резки. Мощные одномодовые волоконные лазеры. Непрерывные иттербиевые лазеры

Диодные лазерные модули Диодные лазерные модули серии ДЛМ выпускаются с выходной мощностью до 100 Вт. Эти лазеры отличает компактный дизайн, высокая надежность и экономичность. Они работают на длине волны около 970 нм, имеют КПД «от розетки» 40-45%, рассчитаны на кондуктивное или принудительное воздушное охлаждение, не требуют замены каких-либо элементов в течение всего срока эксплуатации. Вывод излучения осуществляется по гибкому оптическому волокну диаметром 0,1…0,3 мм, защищенному металлическим кожухом. Для удобства эксплуатации модулей к невидимому рабочему излучению может быть добавлено маломощное излучение пилот-лазера красного или зеленого диапазонов.

В схеме управления лазерного модуля предусмотрены функции включения/выключения выходного излучения, управления выходной мощностью, контроля параметров модуля, управления пилот-лазером. Допустимые частоты модуляции выходного излучения – до 50 кГц. Питание модулей осуществляется от низковольных источников постоянного тока.

Основные преимущества
- Компактный дизайн
- Волоконная доставка излучения
- КПД до 45%
- Кондуктивное или воздушное охлаждение
- Модуляция излучения с частотами до 50 кГц
- Высокая надежность и большой ресурс работы
- Не требуют обслуживания

Области применения
- Пайка
- Сварка пластиков
- Термообработка
- Очистка поверхностей
- Медицинские приборы
- Лазерная накачка
- Научные исследования

Опции
- Зеленый / красный пилот-лазер

Типовая спецификация

Параметры ДЛМ-5 ДЛМ-10 ДЛМ-15 ДЛМ-30 ДЛМ-50 ДЛМ-75 ДЛМ-100
Режим работы Непрерывный, с возможностью модуляции до 50 кГц
Максимальная выходная мощность 5 10 15 30 50 75 100
Длина волны излучения 970
Характеристики волокна
Оптический выход Волокно с незащищенным торцем / защищенный торец / оптический разъем Защищенный торец / оптический разъем
Длина волокна, м до 20 м
Режимы работы
Температурные условия, °С 0…+40
Габариты
Размер, мм 130 х 230 х 36,5 252 х 220 х 75
Вес, кг 3 3 3 5 5 7 8

Непрерывные иттербиевые лазеры

Серия иттербиевых непрерывных лазеров ИЛМ разработана для интеграции в конечное оборудование пользователя для различных областей применения и рассчитана на жесткие условия эксплуатации – при высоких уровнях вибрации и загрязнений, влажности до 90%, большом перепаде температур. Компактные, не требующие обслуживания иттербиевые волоконные лазеры с диодной накачкой генерируют излучение в спектральном диапазоне 1030-1080 нм, которое при помощи одномодового волокна в защитном металлорукаве доставляется непосредственно к зоне воздействия. На конце волокна по желанию заказчика может быть установлена коллимирующая линза или оптический разъем.

Низкое энергопотребление (КПД «от розетки» более 25-30%), компактный дизайн, отсутствие юстируемых элементов, воздушное охлаждение, высокая надежность и большой ресурс на предельных режимах работы обеспечивают принципиальные преимущества иттербиевых волоконных лазеров по сравнению с лазерами других типов для данной спектральной области. Выходная мощность излучения может быть промодулирована по амплитуде с частотой до 5 кГц. Питание лазеров серии ИЛМ осуществляется от сети постоянного тока с напряжением 24 В.

Основные преимущества
- Выходная мощность до 120 Вт
- Качество пучка М2

Опции
- Линейная поляризация
- Длина волокна до 20 м

Области применения
- Пайка
- Микросварка
- Термообработка
- Гравировка
- Медицинские приборы
- Научное приборостроение

Типовая спецификация

Параметры ИЛМ-1 ИЛМ-5 ИЛМ-10 ИЛМ-20 ИЛМ-50 ИЛМ-100
Режим работы Непрерывный, с возможностью модуляции до 5 кГц
Максимальная выходная мощность, Вт 1 5 10 20 50 100
Длина волны излучения, нм 1030 – 1080 (уточняется при заказе)
Поляризация Случайная
Качество пучка, М 2 1,05
Режимы работы
Температурные условия, °С 0…+40
Потребляемая мощность, Вт 25 60 90 125 150 240
Характеристики волокна
Оптический выход Коллиматор
Длина волокна, м 2 – 20 м
Габариты
Размер, мм 165 х 70 х 230 252 х 75 х 220
Вес, кг 3 3 5 7 8 8

Непрерывные эрбиевые лазеры

Для 1,5 мкм спектрального диапазона НТО «ИРЭ-Полюс» предлагает широкий спектр оборудования для различных областей применения лазерной техники – от телекоммуникаций до медицины. В усилителях и лазерах этого спектрального диапазона используются кварцевые волокна, легированные эрбием, и высокоресурсные лазерные диоды накачки.

Эрбиевые волоконные лазеры серии ЭЛМ – уникальные инструменты, обладающие всеми достоинствами волоконных лазеров и работающие в безопасном для глаз спектральном диапазоне (1530-1620 нм). Эти лазеры, благодаря широкому диапазону выходной мощности, большой эффективности, высокой надежности и широкому набору опций, являются лучшим решением для разнообразных задач по обработке материалов, в телекоммуникации, медицине, научном приборостроении. Управление приборами осуществляется через интерфейс, что позволяет использовать ЭЛМ как часть технологической установки, медицинского или научного комплексов.

Основные преимущества
- Длина волны излучения от 1530 до 1620 нм
- КПД от розетки более 10%
- Отличное качество пучка
- Воздушное или водяное охлаждение

Опции
- Модуляция мощности
- Линейная поляризация
- Длина выходного волокна до 20 м

Области применения
- Обработка материалов
- Телекоммуникации
- Медицинские приборы

- Экологический мониторинг
- Научное приборостроение

Типовая спецификация

Параметры ЭЛМ-5 ЭЛМ-10 ЭЛМ-20 ЭЛМ-30 ЭЛМ-50
Режим работы Непрерывный
Мощность, Вт 5 10 20 30 50
Длина волны излучения, нм 1550 – 1570
Поляризация Случайная
Качество пучка, М 2 1,05 1,05 1,05 1,05 1,05
Режимы работы
Температурные условия, °С 0…+40
Потребляемая мощность, Вт 50 90 160 240 330
Характеристики волокна
Оптический выход Коллиматор
Длина волокна, м 2
Габариты
Размер, мм 130 х 230 х 70 252 х 220 х 75
Вес, кг 5 5 8 8 10

Непрерывные тулиевые лазеры

Лазерные системы на тулий-активированном волокне созданы компанией НТО «ИРЭ-Полюс» специально для удовлетворения возросшей потребности в высокомощных, компактных, одномодовых источниках излучения в спектральном диапазоне 1800-2100 нм в таких областях применения, как обработка материалов и медицина. Эти системы имеют кардинальные преимущества по сравнению с традиционными твердотельными лазерами, так как обеспечивают высокую мощность и качество выходного излучения, обладают высоким КПД (более 5% «от розетки»), компактны, не требуют юстировок и обслуживания. Доставка излучения осуществляется при помощи одномодового волокна, защищенного металлическим кожухом. Лазеры серии ТЛМ легко интегрируются в различные комплексы и системы заказчика.

Тулиевые волоконные лазеры серии ТЛМ работают в непрерывном режиме на низшей поперечной моде (М2

Основные преимущества
- Одномодовый режим работы (М2

Опции
- Линейная поляризация
- Длина выходного волокна до 20 м

Области применения
- Обработка материалов
- Медицинские приборы
- Накачка твердотельных лазеров среднего ИК-диапазона и оптических параметрических генераторов
- Экологический мониторинг
- Научное приборостроение

Типовая спецификация

Параметры ТЛМ-5 ТЛМ-10 ТЛМ-30
Режим работы Непрерывный
Мощность, Вт 5 10 30
Длина волны излучения, нм 1800-2100
Поляризация Случайная
Характеристики волокна
Оптический выход Коллиматор
Длина волокна, м 2 — 20
Режимы работы
Температурные условия, °С 0…+40
Потребляемая мощность, Вт 60 120 350
Габариты
Размер, мм 130 х 230 х 36,5 215 х 95 х 286
Вес, кг 5 8 10

Импульсные иттербиевые лазеры

Импульсные волоконные лазеры серии ИЛИ обеспечивает импульсное излучение со средней мощностью до 50 Вт и длительностью импульса от 80 до 120 нс. Рабочие частоты модуляции лежат в диапазоне от 20 кГц до 100 кГц. Излучение выводится через оптического волоконный кабель длиной до 6 метров. Выходной коллиматор снабжен оптическим изолятором, обеспечивающим защиту от обратного отражения. Центральная линия генерации лежит в диапазоне 1060-1070 нм. Лазеры серии ИЛИ снабжаются маломощным красным пилот-лазером.

Импульсные лазеры серии ИЛИ характеризуются низким потреблением от сети постоянного тока напряжением 24 В, имеют воздушное охлаждение с помощью встроенных вентиляторов.

Основная область применения лазеров серии ИЛИ – лазерная маркировка и гравировка. Они также используются для прецизионной резки, микрообработки, лазерного фрезерования.

Основные преимущества:
- Выходная мощность до 50 Вт
- Качество пучка М2

Области применения:
- Гравировка
- Маркировка
- Микрообработка
- Прецизионная резка
- Научное приборостроение

Типовая спецификация

Параметры ИЛИ-0,5-10 ИЛИ-1-20 ИЛИ-1-50
Режим работы Импульсный
Энергия в импульсе, мДж 0,5 1 1
Длина волны излучения, нм 1062
Поляризация Случайная
Средняя выходная мощность, Вт 10 20 50
Длительность импульса, нс 90 — 120
Качество пучка, М 2 1,4 1,8 1,8
Режимы работы
Температурные условия, °С 0…+40
Потребляемая мощность, Вт 120 150 240
Характеристики волокна
Оптический выход Коллиматор со встроенным изолятором
Длина волокна, м 3
Габариты
Размер, мм 215 х 95 х 286
Вес, кг 8 9 12

Эти лазеры весьма условно можно выделить в отдельный тип, так как в них использован примерно такой же механизм возбуждения активной среды (накачки), как у газовых или твердотельных лазеров.

В качестве накачки также используются лазерные диоды. Эти источники были разработаны для телекоммуникационных систем волоконной связи, где они применяются в качестве усилителей сигналов. Представьте себе, что кристалл, в котором происходит генерация полезного лазерного излучения, как бы растянут на несколько десятков метров и представляет собой сердцевину волокна диаметром несколько микрон, которая находится внутри кварцевого волокна. Излучение диодов направляется в кварцевое волокно, и на всем его протяжении происходит оптическая накачка сердцевины.

Применение лазерного стекла в качестве активного элемента в твердотельных лазерах известно давно. В отличие от кристаллов, лазерные стекла имеют неупорядоченную внутреннюю структуру. Наряду со стеклообразующими компонентами SiO 2 , B 2 O 3 , P 2 O 5 , BeF 2 , в них содержатся Na 2 O, K 2 O, Li 2 O, MgO, CaO, BaO, Al 2 O 3 , Sb 2 O 3 . Активными примесями чаще всего служат ионы неодима Nd 3+ ; используются также гадолиний Gd 3+ , эрбий Er 3+ , гольмий Но 3+ , иттербий Yb 3+ . Концентрация ионов неодима Nd 3+ в стеклах доходит до 6% (по массе).

В лазерных стеклах достигается высокая концентрация активных частиц. Другим достоинством таких стекол является возможность изготовления активных элементов больших размеров практически любой формы и с очень высокой оптической однородностью. Стекла получают в платиновых или керамических тиглях. К недостаткам использования стекол в качестве лазерных материалов следует отнести относительно широкую полосу генерации (3­10 нм) и низкую теплопроводность, препятствующую быстрому отводу тепла при мощной оптической накачке.

Волоконные лазеры имеют очень высокую (до 80%) эффективность преобразования излучения лазерных диодов в полезное излучение. Для обеспечения их работы достаточно воздушного охлаждения. Эти лазерные источники весьма перспективны для систем цифровой записи печатных форм.

На рис. 3.22 представлена схема работы волоконного лазера с полупроводниковой накачкой и в общем виде весь оптический тракт вплоть до обрабатываемого материала. Главная особенность этого лазера состоит в том, что излучение здесь рождается в тонком, диаметром всего 6­8 мкм, волокне (сердцевине; например, активной средой может быть иттербий), которое находится внутри кварцевого волокна диаметром 400­600 мкм. Излучение лазерных диодов накачки вводится в кварцевое волокно и распространяется вдоль всего сложного составного волокна, имеющего в длину несколько десятков метров.

Рисунок 3.22 – Оптическая система с волоконным лазером:

1 – сердцевина, легированная иттербием, диаметр 6-8 мкм; 2 – кварцевое волокно, диаметр 400-600 мкм; 3 – полимерная оболочка; 4 – внешнее защитное покрытие; 5 – лазерные диоды оптической накачки; 6 – оптическая система накачки; 7 – волокно (до 40 м); 8 – коллиматор; 9 – модулятор света; 10 – фокусирующая оптическая система

Излучение оптически накачивает сердцевину, и именно здесь, на атомах иттербия, происходят физические превращения, приводящие к возникновению лазерного излучения. Вблизи концов волокна на сердцевине делают два так называемых дифракционных зеркала в виде набора насечек на цилиндрической поверхности сердцевины (дифракционные решетки) – так создается резонатор волоконного лазера. Общую длину волокна и количество лазерных диодов выбирают, исходя из требуемой мощности и эффективности. На выходе получается идеальный одномодовый лазерный пучок с весьма равномерным распределением мощности, что позволяет сфокусировать излучение в пятно малого размера и получить большую, чем в случае мощных твердотельных Nd:YAG­лазеров, глубину резкости.

Стоит также отметить, что ряд таких свойств излучения волоконных лазеров, как, например, характер поляризации пучка, делает удобным и надежным управление этим излучением с помощью акусто­оптических устройств и позволяет реализовать многолучевые схемы записи изображений.

Поскольку оптическая накачка идет по всей длине волокна, то отсутствуют такие свойственные обычным твердотельным лазерам эффекты, как термолинза в кристалле, искажения волнового фронта вследствие дефектов самого кристалла, нестабильность луча во времени и др., которые всегда препятствовали достижению максимальных возможностей твердотельных систем. Однако сами принципы строения и работы волоконного лазера гарантируют высокие эксплуатационные характеристики и делают данные устройства совершенными преобразователями светового излучения в лазерное.

«Сердечник» лазера толщиной всего лишь несколько микрометров состоит из иттербия и функционирует как резонатор. Наилучшего качества удается добиться при длине волны излучения 1110 нм, при этом длина оптоволоконного кабеля может достигать 40 м. Серийно выпускаются лазеры мощностью от 1 до 100 Вт, с КПД около 50%. Оптоволоконные лазеры обычно не требуют специального охлаждения. Минимальный размер пятна у современных оптоволоконных лазеров – около 20 мкм, причем при использовании механизмов коррекции его удается уменьшить до 5 мкм. Глубина фокуса составляет 300 мкм, что позволяет без механизма автофокусировки успешно работать с формными материалами различной толщины.

Волоконный лазер – это лазер с полностью или частично оптоволоконной реализацией, где из оптического волокна выполнены усиливающая среда и, в отдельных случаях, резонатор.


Волоконный лазер – это лазер с полностью или частично оптоволоконной реализацией, где из оптического волокн а выполнены усиливающая среда и, в отдельных случаях, резонатор. В зависимости от степени волоконной реализации лазер может быть цельноволоконным (активная среда и резонатор) или волоконно-дискретным (волоконный только резонатор или другие элементы ).

Волоконные лазеры могут работать в непрерывной, а также в нано- и фемтосекундной импульсной пульсации.

Конструкция лазера зависит от специфики их работы. Резонатором может быть система Фабри-Перо или резонатор кольцевой. В большинстве конструкций в качестве активной среды используется оптоволокно, допированное ионами редкоземельных элементов – тулий, эрбий, неодим, иттербий, празеодимий. Накачка лазера осуществляется с помощью одного или нескольких лазерных диодов непосредственно в сердцевину волокна или, в мощных системах, во внутреннюю оболочку.

Волоконные лазеры получили широкое применение благодаря широкому выбору параметров, возможности настройки импульса в широком диапазоне длительности, частот и мощностей.

Мощность волоконных лазеров – от 1 Вт до 30 кВт. Длина оптического волокна – до 20 м.


Применение волоконных лазеров:

резка металлов и полимеров в промышленном производстве,

прецизионная резка,

микрообработка металлов и полимеров,

обработка поверхностей,

пайка,

термообработка,

маркировка продукции,

телекоммуникация (оптоволоконные линии связи),

производство электроники,

производство медицинских приборов,

научное приборостроение.

Преимущества волоконных лазеров:

– волоконные лазеры являются уникальным инструментом, открывающим новую эру в обработке материалов,

портативность и возможность выбора длины волны волоконных лазеров позволяют реализовать новые эффективные применения недоступные для других типов ныне существующих лазеров,

– превосходят другие типы лазеров практически по всем существенным параметрам, важным с точки зрения их промышленного использования,

возможности настройки импульса в широком диапазоне длительности, частот и мощностей,

– возможность задания последовательности коротких импульсов с требуемой частотой и высокой пиковой мощностью , что необходимо, к примеру, для лазерной гравировки,

широкий выбор параметров.

Сравнение лазеров различных типов:

Параметр Требуется для использования в промышленности СО 2 YAG-Nd с ламповой накачкой YAG-Nd с диодной накачкой Диодные лазеры
Выходная мощность, кВт 1…30 1…30 1…5 1…4 1…4 1…30
Длина волны, мкм как можно меньше 10,6 1,064 1,064 или 1,03 0,8…0,98 1,07
BPP, мм х мрад < 10 3…6 22 22 > 200 1,3…14
КПД, % > 20 8…10 2…3 4…6 25…30 20…25
Дальность доставки излучения волокном 10…300 отсутствует 20…40 20…40 10…50 10..300
Стабильность выходной мощности как можно выше низкая низкая низкая высокая очень высокая
Чувствительность к обратному отражению как можно ниже высокая высокая высокая низкая низкая
Занимаемая площадь, кв.м как можно меньше 10…20 11 9 4 0,5
Стоимость монтажа, отн.ед. как можно меньше 1 1 0,8 0,2 < 0,05
Стоимость эксплуатации, отн.ед. как можно меньше 0,5 1 0,6 0,2 0,13
Стоимость обслуживания, отн.ед. как можно меньше 1…1,5 1 4…12 4…10 0,1
Периодичность замены ламп или лазерных диодов, час. как можно больше 300…500 2000…5000 2000…5000 > 50 000


2000w cw оптико raycus импульсный волоконный иттербиевый лазер 50 вт 100 квт купить производитель
волоконные твердотельные лазеры
резка металлов фанеры обалденная cernark гравировка режимы глубокой гравировки волоконным лазером
устройство иттербиевого волоконного лазера
волоконная машина продаю лазер
принцип работы производство фрязино 1.65 мкм технология иттербиевый купить цена ipg лс 1 оптический для резки металла гравировка импульсный принцип работы станок оптико применения мощность своими руками устройство схема длина волны сварка производитель режет волнами

Коэффициент востребованности 902

ТОМАС ШРИБЕР, АНДРЕАС ТЮННЕРМАН и АНДРЕАС ТОМС

Благодаря идентификации проблем мощных волоконных лазеров и оптимизации оптического волокна, была достигнута одномодовая мощность 4,3 кВт с будущим возможным масштабированием и новыми сверхбыстрыми лазерными приложениями в разработке.

Если есть одна очевидная тенденция в лазерной технологии, то это рост волоконных лазеров. Волоконные лазеры взяли на себя долю рынка от мощных CO2-лазеров, а также от объемных твердотельных лазеров при мощной резке и сварке. Крупные производители волоконных лазеров в настоящее время обращаются к ряду новых приложений, чтобы завоевать еще больше рынков.

Среди мощных лазеров одномодовые системы предлагают функции, которые делают их желательными: они обладают самой высокой яркостью, и их можно сфокусировать до нескольких микрон и до самых высоких интенсивностей. Они также демонстрируют наибольшую глубину фокуса, что делает их наиболее подходящими для дистанционной обработки.

Тем не менее, их сложно изготовить, и только лидирующая на рынке лидирующая компания PHG Photonics (Oxford, MA) предлагает систему мощностью 10 кВт с одномодовым излучением (2009).

К сожалению, нет данных на эти характеристики луча, в частности, о любых возможных многомодовых компонентах, которые могут соответствовать одномодовому лучу.

Команда исследователей в Германии продемонстрировала одномодовую мощность 4,3 кВт от волоконного лазера, в которой выход был ограничен только мощностью входной накачки.

Финансируется правительством Германии и в сотрудничестве с TRUMPF (Ditzingen, Germany), Active Fiber Systems, Jenoptik и Лейбницским институтом фотонных технологий, группой ученых из Университета Фридриха Шиллера и Института прикладной оптики и точной инженерии Фраунгофера (все В Йене, Германия) проанализировали проблемы для масштабирования таких лазеров, а затем разработали новые волокна для преодоления ограничений. Команда успешно завершила серию испытаний, показывающих одномодовый выход 4,3 кВт, в которых выход волоконного лазера ограничивался только мощностью входной накачки.

Эффекты сдерживания для одномодового волоконного лазерного масштабирования

Каковы проблемы для такого одномодового мощного волоконного лазера? Они могут быть сгруппированы в три поля: a) улучшенная накачка, b) разработка активного волокна с низкими оптическими потерями, работающими только в одномодовом режиме, и c) правильное измерение результирующего излучения.

В этой статье мы будем предполагать, что а) решается с помощью высокоярких лазерных диодов и соответствующих методов развязки, и сосредоточимся на двух других областях.

В рамках разработки активного волокна для высокомощного одномодового режима для оптимизации используются два общих набора параметров: легирование и геометрия. Все параметры должны быть определены для минимальных потерь, одномодового режима и, наконец, мощного усиления. Идеальный волоконный усилитель обеспечит высокую скорость преобразования более 90%, отличное качество луча и выходную мощность, ограниченную только доступной мощностью накачки.

Однако повышение масштаба одномодовой системы до более высоких мощностей может привести к большей плотности мощности внутри активной активной зоны, увеличению тепловой нагрузки и ряду нелинейных оптических эффектов, таких как вынужденное комбинационное рассеяние (ВКР) и вынужденное рассеяние Бриллюэна (SBS) ,

В зависимости от размера активной сердцевины можно возбуждать и усиливать несколько поперечных мод. Для заданного шага индекса между ядром и оболочкой, чем меньше активное сечение активной ячейки, тем меньше число таких режимов. Однако меньший диаметр также означает более высокую плотность мощности. Несколько трюков, таких как сгибание волокна, добавляют потери для более высоких режимов.

Тем не менее, для больших диаметров сердечника и при тепловой нагрузке могут возникать другие режимы. Эти режимы подвержены взаимодействию во время усиления — без оптимальных условий распространения, выходной профиль может стать пространственно или временно неустойчивым.

Нестабильности поперечных мод

Иттербий (Yb) -допированные волокна являются типичной рабочей средой для мощных одномодовых волоконных лазеров. Но за пределами определенного порога они показывают совершенно новый эффект — так называемые неустойчивости поперечной моды (TMI).

При определенном уровне мощности внезапно появляются более высокие режимы или даже моды оболочки, энергия динамически передается между этими режимами, а качество луча уменьшается.

Пучок начинает колебаться на выходе.

Поскольку TMI была обнаружена, она наблюдалась в различных конструкциях волокон от волокон с шаговым индексом до волокон фотонного кристалла. Только его пороговое значение зависит от геометрии и легирования, но грубая оценка говорит о том, что этот эффект превышает выходную мощность 1 кВт.

Тем временем было обнаружено, что эффект связан с тепловыми эффектами внутри волокна с сильным отношением к эффектам фотопотемнения. Более того, восприимчивость волоконных лазеров к TMI, по-видимому, зависит от состава ядра.

Геометрия шагового индекса приводит к ряду параметров для оптимизации. Диаметр сердечника, размер облицовки насоса и индекс разности преломления между сердечником и оболочкой насоса могут быть настроены. Эта настройка зависит от концентрации легирующей примеси, т. е. концентрация ионов Yb может быть использована для управления длиной поглощения излучения накачки в активном волокне. Другие добавки могут быть добавлены для снижения тепловых эффектов и управления этапом показателя преломления.

Но есть некоторые противоположные требования. Чтобы уменьшить нелинейные эффекты, волокно должно быть короче. Однако для снижения тепловой нагрузки волокно должно быть длиннее. Фото-потемнение растет с квадратом концентрации легирующей примеси, поэтому более длинные волокна с более низким допингом также будут лучше.

Приложения в ультрабыстрой науке

После примерно десятилетия стагнации в области масштабирования мощных одномодовых волоконных лазеров теперь представляется целесообразным разработать новое поколение волоконных лазеров с киловаттным классом с отличным качеством луча.

Показаны выходные мощности 4,3 кВт, ограниченные только мощностью накачки.

Определены основные ограничения для дальнейшего масштабирования, и были определены пути преодоления этих ограничений.

Следует отметить, что это было тщательное исследование всех известных эффектов и последующая оптимизация параметров, которые привели к успехам в дизайне волокон и, наконец, к новым рекордам в выходной мощности.

Дальнейшее масштабирование и адаптация волокна для других приложений кажутся выполнимыми и будут нацелены дальше.

Это открывает ряд интересных перспектив.

С одной стороны, передача результатов в промышленные продукты желательна партнерами по проекту, но потребует дополнительных крупных усилий в области развития.

С другой стороны, эта технология очень важна для масштабирования других волоконно-оптических лазерных систем, таких как фемтосекундные волоконные усилители.

REFERENCES

  1. F. Beier et al., «Single-mode 4.3 kW output power from a directly diode-pumped Yb-doped fiber amplifier,» to be published in Opt. Express.
  2. T. Eidam et al., Opt. Lett., 35, 94–96 (2010).
  3. M. Müller et al., Opt. Lett., 41, 3439–3442 (2016).

Перевод Сергея Рогалева

Под термином «оптоволоконный лазер» обычно понимается лазер с оптическим волокном в качестве усиливающей среды, хотя некоторые лазеры с полупроводниковой усиливающей средой и волоконным резонатором также назвают оптоволоконными лазерами. В большинстве случаев усиливающей средой оптоволоконных лазеров является волокно, допированное редкоземными ионами, такими как эрбий (Er 3+), неодим (Nd 3+), иттербий (Yb 3+), тулий (Tm 3+) или празеодимий (Pr 3+). Для накачки используются один или несколько лазерных диодов.

Резонатор оптоволоконного лазера

Для создания линейного резонатора оптоволоконного лазера, необходимо использовать некоторый отражатель (зеркало), или же создать кольцевой резонатор (кольцевой оптоволоконный лазер).

В линейных резонаторах оптоволоконного лазера используются различные типы зеркал:

· В простых лабораторных установках обычные диэлектрические зеркала могут прикрепляться к перпендикулярно сколотым концам волокна, как показано в рисунке 1. Этот подход, однако, не очень практичен для массового производства и также не очень надежен.

· Френелевское отражение от торца волокна часто достаточно для использования в качестве выходного зеркала резонатора волоконного лазера. На Рис. 2 приведен пример.

· Также возможно внести диэлектрические покрытия непосредственно на концах волокна, обычно методом напыления. Такие покрытия могут использоваться для отражения в широком диапазоне.

· Во многих волоконных лазерах используются волоконные брэгговские решетки, сформированные непосредственно в легированном волокне, или в нелегированном волокне, спаянным с активным слоем. Рисунок 3 показывает лазер распределенным брэгговским отражателем (РБО лазер) с двумя волоконными решетками, но есть также лазеры с распределенной обратной связью с одной решеткой в легированных волокнах со сдвигом фазы в середине.

· Лучшие характеристики по мощности можно получить за счет использования коллиматора на выходе света из волокна и отражения его обратно с помощью диэлектрического зеркала (рис. 4). Интенсивность на зеркале значительно снижается из-за гораздо большей площади пучка. Однако, небольшое смещение может привести к существенным потерям при отражении, поляризационно-зависимые потери и т.д.

· Другой вариант заключается в использовании зеркала в форме петли волокна (рис. 5), на основе волоконной муфты (например, с коэффициентом разделения 50:50) и куска пассивного волокна.

Большинство волоконных лазеров накачиваются одним или несколькими диодными лазерами с волоконными выходами (излучение лазерного диода вводится в волокно). Накачка света может осуществляться непосредственно в сердцевину, или во внутреннюю оболочку волокна в мощных лазерах.