Anti-aircraft missile system beech characteristics. Anti-aircraft missile systems of the Buk family. Tactical and technical characteristics

Army self-propelled anti-aircraft missile system "Buk"(GRAU index - 9K37) is designed to destroy, under conditions of intense radio countermeasures, aerodynamic targets flying at speeds up to 830 m/s at low and medium altitudes (from 30 m to 14-18 km), at ranges up to 30 km, maneuvering from overloads up to 12 units.

The development of the Buk complex began in accordance with the Decree of the Central Committee of the CPSU and the Council of Ministers of the USSR dated January 13, 1972, it provided for the use of cooperation between manufacturers and developers, the main structure corresponding to that previously involved in the creation of the Kub anti-aircraft missile system. At the same time, they determined the development of the M-22 (“Hurricane”) anti-aircraft missile system for the Navy using an anti-aircraft guided missile, integrated with the Buk air defense system.

The developer of the Buk complex as a whole was identified as NIIP (Research Institute of Instrument Engineering) NKO (research and design association) Phazotron (general director Grishin V.K.) MRP (formerly OKB-15 GKAT). Chief designer complex 9K37 – Rastov A.A., CP (command post) 9S470 – Valaev G.N. (then - Sokiran V.I.), SOU (self-propelled firing installations) 9A38 - Matyashev V.V., semi-active Doppler seeker 9E50 for anti-aircraft guided missiles - Akopyan I.G.
PZU (start-loading unit) 9A39 was created at the MKB (Machine-Building Design Bureau) "Start" MAP (formerly SKB-203 GKAT), headed by A.I. Yaskin.

The unified tracked chassis for the complex's vehicles was developed by OKB-40 MMZ (Mytishchi Machine-Building Plant) of the Ministry of Transport Engineering under the leadership of N.A. Astrov.

The development of 9M38 missiles was entrusted to SMKB (Sverdlovsk Machine-Building Design Bureau) "Novator" MAP (former OKB-8) headed by L.V. Lyulev, refusing to involve the design bureau of plant No. 134, which had previously developed a guided missile for the "Cube" complex.

SOC 9S18 (detection and target designation station) (“Dome”) was developed at the NIIIP (Scientific Research Institute of Measuring Instruments) of the Ministry of Radio Industry under the leadership of Vetoshko A.P. (later - Shchekotova Yu.P.). Also, a set of technical tools was developed for the complex. provision and maintenance on a car chassis. Completion of the development of the anti-aircraft missile system was planned for the second quarter of 1975.

To quickly strengthen the air defense of the main striking force of the Army - tank divisions - with increasing the combat capabilities of the "Cube" anti-aircraft missile regiments included in these divisions, by doubling the channel capacity for targets (and, if possible, ensuring complete autonomy of the channels during work from target detection to its destruction), it was prescribed to carry out the creation of the Buk air defense system in 2 stages:

- First step provided for the introduction into the 2K12 “Kub-M3” complex of a 9A38 self-propelled firing system with 9M38 missiles in each battery. In this form, the 2K12M4 “Kub-M4” air defense system was adopted for service in 1978;

- second phase assumed the full adoption of the entire complex consisting of the 9S18 detection station, the 9S470 command post, the 9A310 self-propelled firing system, the 9A39 launcher-loader and the 9M38 missile defense system. Joint testing of the complex began at the Emba training ground in November 1977 and continued until March 1979, after which the complex was put into service in its entirety.

For the Buk-1 complex, it was planned to include a Kub-M3 regiment in each anti-aircraft missile battery (5 pieces), in addition to one SURN and 4 self-propelled launchers, to introduce a 9A38 self-propelled firing system from the Buk missile system. Thus, thanks to the use of a self-propelled firing system, the cost of which was about 30% of the cost of the rest of the battery, the number of combat-ready anti-aircraft guided missiles in the Kub-M3 regiment increased from 60 to 75, and target channels - from 5 to 10.

The 9A38 self-propelled firing mount, mounted on the GM-569 chassis, seemed to combine the functions of the SURN and the self-propelled launcher used as part of the Kub-M3 complex. The self-propelled firing installation provided search in the established sector, detected and captured targets for automatic tracking, solved pre-launch tasks, launched and homing 3 missiles (3M9M3 or 9M38) located on it, as well as 3 3M9M3 guided missiles located on the 2P25M3 self-propelled launcher, coupled with her. The combat operation of the fire installation was carried out both autonomously and under control and target designation from the SURN.

Self-propelled firing system 9A38 consisted of:
— digital computing system;
- Radar 9S35;
- a starting device equipped with a power servo drive;
- television-optical viewfinder;
— ground-based radar interrogator operating in the “Password” identification system;
- equipment for telecode communication with SURN;
- equipment for wired communication with SPU;
— autonomous power supply systems (gas turbine generator);
- equipment for navigation, topographic reference and orientation;
- life support systems.

The weight of the self-propelled firing system, including the weight of the combat crew consisting of four people, was 34 tons.

The progress that has been made in the creation of ultra-high-frequency devices, electromechanical and quartz filters, and digital computers has made it possible to combine the functions of target detection, illumination and target tracking stations in the 9S35 radar. The station operated in the centimeter wavelength range, it used a single antenna and two transmitters - continuous and pulsed radiation.

The first transmitter was used to detect and automatically track a target in a quasi-continuous mode of radiation or, in case of difficulties with unambiguous determination of range, in a pulse mode with pulse compression (linear frequency modulation is used). The continuous radiation transmitter was used to illuminate targets and anti-aircraft guided missiles. The station's antenna system carried out a sector search using the electromechanical method, target tracking in range and angular coordinates was carried out using the monopulse method, and signal processing was carried out by a digital computer.

The width of the antenna pattern of the target tracking channel in azimuth was 1.3 degrees and in elevation - 2.5 degrees, the illumination channel - in azimuth - 1.4 degrees and in elevation - 2.65 degrees. The search sector review time (in elevation - 6-7 degrees, in azimuth - 120 degrees) in autonomous mode - 4 seconds, in control mode (in elevation - 7 degrees, in azimuth - 10 degrees) - 2 seconds.

The average transmitter power of the target detection and tracking channel was: in the case of using quasi-continuous signals - at least 1 kW, in the case of using signals with linear frequency modulation - at least 0.5 kW. The average power of the target illumination transmitter is at least 2 kW. The noise figure of direction-finding and survey receivers of the station is no more than 10 dB. The transition time of the radar station between standby and combat modes was less than 20 seconds.

The station could unambiguously determine the speed of targets with an accuracy of -20 to +10 m/s; ensure selection of moving targets. The maximum range error is 175 meters, the root-mean-square error of angular coordinates measurement is 0.5 d.c. The radar station was protected from passive, active and combined interference. The self-propelled firing system equipment ensured blocking the launch of an anti-aircraft guided missile when escorted by its own helicopter or aircraft.

Self-propelled firing system 9A38 was equipped with a launcher with interchangeable guides, designed for 3 3M9M3 guided missiles or 3 9M38 guided missiles.

The 9M38 anti-aircraft missile used a dual-mode solid propellant engine(total running time was about 15 seconds). The use of a ramjet engine was abandoned not only due to the high resistance in the passive sections of the trajectory and the instability of operation at a large angle of attack, but also because of the complexity of its development, which largely determined the disruption in the timing of the creation of the Kub air defense system. The power structure of the engine chamber was made of metal.

The general layout of an anti-aircraft missile is X-shaped, normal, with a low elongation wing. Appearance missiles resembled American-made shipborne anti-aircraft missiles of the Standard and Tartar families. This corresponded to severe restrictions on overall dimensions when using 9M38 anti-aircraft guided missiles in the M-22 complex, which was developed for the Soviet Navy.

The rocket was carried out according to the normal scheme and had a low elongation wing. In the front part, a semi-active hydroelectric pump, autopilot equipment, power supply and warhead are sequentially located. To reduce the spread of alignment over flight time, the combustion chamber of the solid propellant rocket engine was placed closer to the middle, and the nozzle block was equipped with an elongated gas duct, around which the steering drive elements are located. The rocket does not have parts that separate in flight. The diameter of the 9M38 rocket is 400 mm, length - 5.5 m, rudder span - 860 mm.

The diameter of the front compartment (330 mm) of the rocket was smaller in relation to the tail compartment and engine, which is determined by the continuity of some elements with the 3M9 family. The missile was equipped with a new homing head with a combined control system. The complex implemented homing of an anti-aircraft guided missile using the proportional navigation method.

The 9M38 anti-aircraft guided missile ensured the destruction of targets at altitudes from 25 m to 20 km at a range of 3.5 to 32 km. The rocket's flight speed was 1000 m/s and maneuvered with overloads of up to 19 units. The weight of the rocket is 685 kg, including a 70 kg warhead.

The design of the missile ensured its delivery to the troops in a fully equipped form in the 9YA266 transport container, as well as operation without routine maintenance and inspections for 10 years.

From August 1975 to October 1976, the Buk-1 anti-aircraft missile system consisting of SURN 1S91M3, self-propelled firing system 9A38, self-propelled launchers 2P25M3, anti-aircraft guided missiles 9M38 and 3M9M3, as well as MTO (vehicles Maintenance) 9B881 passed state tests at the Embensky training ground.

As a result of the tests, the detection range of aircraft by a radar station of a self-propelled firing system operating in autonomous mode at altitudes of more than 3 thousand m was obtained - from 65 to 77 km; at low altitudes (from 30 to 100 meters) the detection range decreased to 32-41 km. Detection of helicopters at low altitudes occurred at a range of 21-35 km.

When operating in a centralized mode, due to the limited capabilities of the SURN 1S91M2 issuing target designation, the detection range of aircraft at altitudes of 3-7 km was reduced to 44 km and targets at low altitudes - to 21-28 km. In autonomous mode, the operating time of a self-propelled firing system (from the moment of target detection to the launch of a guided missile) was 24-27 seconds. The loading/discharging time for three 9M38 or 3M9M3 anti-aircraft guided missiles was 9 minutes.

When firing a 9M38 anti-aircraft guided missile, the destruction of an aircraft flying at altitudes of more than 3 thousand m was ensured at a range of 3.4-20.5 km, at an altitude of 30 m - 5-15.4 km. The affected area in height is from 30 meters to 14 kilometers, in terms of the heading parameter - 18 km. The probability of hitting an aircraft with one 9M38 guided missile is 0.70-0.93.

The complex was put into service in 1978. Since the 9A38 self-propelled firing system and the 9M38 anti-aircraft guided missile were means complementary to the Kub-M3 anti-aircraft missile system, the complex was given the name “Kub-M4” (2K12M4). The Kub-M4 complexes, which appeared in the air defense forces of the Ground Forces, made it possible to significantly increase the effectiveness of the air defense of tank divisions of the SV SA.

The combat assets of the Buk anti-aircraft missile system had the following characteristics.

Command post 9S470 installed on the GM-579 chassis provided:
— receiving, displaying and processing target data coming from the 9S18 station (detection and target designation station) and 6 9A310 self-propelled firing systems, as well as from higher command posts;

— selection of dangerous targets and their distribution between self-propelled firing systems in automatic and manual modes, assignment of sectors of their responsibility;

— display of information about the presence of anti-aircraft guided missiles on firing and launch-loading installations, about the letters of the illumination transmitters for firing installations, about work on targets, about the operating mode of the detection and target designation station;

— organizing the operation of the complex in the event of interference and the use of anti-radar missiles;

— documentation of training and work of calculation of CP.

The command post processed messages about 46 targets located at altitudes of up to 20 km in a zone with a radius of 100 km per station review cycle and issued up to 6 target designations for self-propelled firing systems (accuracy in elevation and azimuth - 1 degree, in range - 400-700 meters ). The weight of the command post, including a combat crew of 6 people, is no more than 28 tons.

Coherent-pulse three-coordinate detection and target designation station “Dome” (9C18) centimeter range having electronic scanning of the beam according to the elevation angle in a sector (set to 30 or 40 degrees) with mechanical (in a given sector or circular) rotation of the antenna in azimuth (using a hydraulic drive or an electric drive). The Kupol station was intended to detect and identify air targets at a range of up to 110-120 kilometers (at an altitude of 30 meters - 45 kilometers) and transmit information about the air situation to the 9S470 command post.

Depending on the presence of interference and the established sector in elevation, the speed of viewing the space during a circular view was 4.5 - 18 seconds and when viewing in a 30-degree sector 2.5 - 4.5 seconds. Radar information was transmitted to the 9S470 command post via a telecode line in the amount of 75 marks during the review period (4.5 seconds). Root mean square errors in measuring target coordinates: in elevation and azimuth - no more than 20′, in range - no more than 130 m, resolution in elevation and azimuth - 4 degrees, in range - no more than 300 m.

All station equipment was placed on a modified self-propelled chassis of the SU-100P family. The tracked base of the detection and target designation station differed from the chassis of other means of the Buk anti-aircraft missile system, since the Kupol radar station was initially intended to be developed outside the anti-aircraft complex - as a means of detecting the divisional air defense unit of the Ground Forces.

The time it took to transfer the Kupol station between traveling and combat positions was up to 5 minutes, and from duty to operating mode - about 20 seconds. The weight of the station (including a crew of 3 people) is up to 28.5 tons.

According to its structure and purpose self-propelled firing system 9A310 It differed from the 9A38 self-propelled firing system of the Kub-M4 (Buk-1) anti-aircraft missile system in that it communicated using a telecode line not with SURN 1S91M3 and self-propelled launcher 2P25M3, but with the command post 9S470 and PZU 9A39. Also, on the launcher of the 9A310 installation there were not three, but four 9M38 anti-aircraft guided missiles. The time it took to transfer the installation from traveling to combat position was less than 5 minutes. The time to transfer from standby mode to operating mode, in particular, after changing position with the equipment turned on, was up to 20 seconds.

Loading the 9A310 firing system with four anti-aircraft guided missiles from the launch-loading installation took 12 minutes, and from a transport vehicle - 16 minutes. The mass of the self-propelled firing system, including a combat crew of 4 people, was 32.4 tons. The length of the self-propelled firing system is 9.3 m, width - 3.25 m (in working position - 9.03 m), height - 3.8 m (in working position - 7.72 m).

Launch-loading installation 9A39 installed on the GM-577 chassis was intended for transporting and storing 8 anti-aircraft guided missiles (on the launcher - 4, on fixed mounts - 4), launching 4 guided missiles, self-loading its launcher with four missiles from the cradle, self-loading the 8th missile defense system from a transport vehicle (charging time 26 minutes), from ground cradles and transport containers, discharge and on the launcher of a self-propelled firing system with 4 anti-aircraft guided missiles.

Thus, the launch-loading installation of the Buk anti-aircraft missile system combined the functions of the TZM and the self-propelled launcher of the Kub complex. The launch-loading installation consisted of a starting device with a servo power drive, a crane, supports, a digital computer, equipment for topographical referencing, navigation, telecode communication, orientation, power supply and energy supply units. The mass of the installation, including a combat crew of 3 people, is 35.5 tons. Dimensions of the launch-loading installation: length - 9.96 m, width - 3.316 m, height - 3.8 m.

The complex's command post was received from the command post of the Buk anti-aircraft missile brigade ( automated system control "Polyana-D4") and from the detection and target designation station data on the air situation, processed them and issued instructions to self-propelled firing systems that searched and captured for automatic target tracking. When the target entered the affected area, anti-aircraft guided missiles were launched.

To guide missiles, the proportional navigation method was used, which provided high accuracy guidance When approaching the target, the homing head issued a command to the radio fuse for close arming. When approaching a distance of 17 meters, upon command, the warhead was detonated. If the radio fuse failed to operate, the anti-aircraft guided missile self-destructed. If the target was not hit, a second missile was launched at it.

Compared to the Kub-M3 and Kub-M4 anti-aircraft missile systems The Buk air defense system had higher operational and combat characteristics and provided:
— simultaneous firing of up to 6 targets by a division, and, if necessary, execution of up to 6 independent combat missions in the case of autonomous use of self-propelled firing systems;
- greater detection reliability thanks to the organization of a joint survey of the space by 6 self-propelled firing systems and a detection and target designation station;
— increased noise immunity due to the use of a special type of illumination signal and an on-board computer for the homing head;
- greater efficiency in hitting targets due to increased power warhead of an anti-aircraft guided missile.

Based on the results of tests and modeling, it was determined that the Buk anti-aircraft missile system can fire at non-maneuvering targets flying at altitudes from 25 meters to 18 km at speeds up to 800 m/s, at ranges from 3–25 km (at speeds up to 300 m /s – up to 30 km) at exchange rate parameter up to 18 km with the probability of being hit by one guided missile – 0.7-0.8. When firing at maneuvering targets (overload up to 8 units), the probability of defeat was 0.6.

The Buk complex was adopted by the ground forces' air defense forces in 1980. Serial production of combat weapons of the Buk complex was mastered in the cooperation involved in the Kub-M4 air defense system. New equipment - KP 9S470, self-propelled firing systems 9A310 and detection and target designation stations 9S18 - were produced by the Ulyanovsk Mechanical Plant MRP, launch-loading installations 9A39 - at the Sverdlovsk Machine-Building Plant named after. Kalinina.

MODERNIZATION OF THE BUK ADAM

In accordance with the Resolution of the USSR Council of Ministers dated November 30, 1979, the Buk anti-aircraft missile system was modernized to increase its combat capabilities and the protection of the complex's radio-electronic equipment from anti-radar missiles and interference.

As a result of tests that were carried out in February-December 1982 at the Emba test site, it was found that modernized Buk-M1 compared to the Buk anti-aircraft missile system, it provides a larger engagement area for aircraft, can shoot down an ALCM cruise missile with a probability of being hit by one guided missile of more than 0.4, Hugh-Cobra helicopters - 0.6-0.7, hovering helicopters - 0.3-0.4 at ranges from 3.5 to 10 km.

The self-propelled firing system uses 72 letter illumination frequencies instead of 36, which helps to increase protection from intentional and mutual interference. Recognition of 3 classes of targets is provided - ballistic missiles, airplanes, helicopters.

Compared to the 9S470 command post, the 9S470M1 KP provides simultaneous reception of data from its own detection and target designation station and about 6 targets from the air defense control post of a tank (motorized rifle) division or from the army air defense command post, as well as comprehensive training for crews of anti-aircraft missile systems.

Compared to the 9A310 self-propelled firing system, the 9A310M1 installation provides target detection and acquisition for automatic tracking at long ranges (approximately 25-30%), as well as recognition of ballistic missiles, helicopters and aircraft with a probability of more than 0.6.

The complex uses a more advanced detection and target designation station “Kupol-M1” (9S18M1), which has a flat elevation phased antenna array and a GM-567M self-propelled tracked chassis. The same type of tracked chassis is used at the command post, self-propelled firing installation and launch-loading installation.

The Buk-M1 complex provides for effective technical and organizational measures for protection against anti-radar missiles. The combat assets of the Buk-M1 air defense system are interchangeable with similar weapons of the Buk complex without modifications. The standard organization of technical units and combat formations is similar to that of the Buk anti-aircraft missile system.

The Buk-M1 complex was adopted by the Air Defense Forces of the Ground Forces in 1983. and him mass production established cooperation between industrial enterprises that produced the Buk anti-aircraft missile system. In the same year, the Navy's M-22 Uragan anti-aircraft missile system, unified with the Buk complex for 9M38 guided missiles, also entered service. Complexes of the Buk family called “Gang” were proposed to be supplied abroad.

During the Defense 92 exercise, anti-aircraft missile systems of the Buk family successfully fired at targets based on the R-17 and Zvezda ballistic missiles and the Smerch MLRS missile.

Cooperation of enterprises led by Tikhonravov Research Institute in 1994-1997, work was carried out on the Buk-M1-2 anti-aircraft missile system. Thanks to the use of the new 9M317 missile and the modernization of other air defense systems, for the first time it was possible to destroy Lance tactical ballistic missiles and aircraft missiles at a range of up to 20 km, elements of precision weapons and surface ships at a range of up to 25 km and ground targets (large command posts, launch sites installations, aircraft at airfields) at a distance of up to 15 km.

The effectiveness of destroying cruise missiles, helicopters and aircraft has increased. The boundaries of the affected zones in range increased to 45 km and in height - up to 25 km. The new missile provides for the use of an inertial-corrected control system with a radar semi-active homing head with guidance using the proportional navigation method. The rocket has a launch mass of 710-720 kg with a warhead mass of 50-70 kg. Externally, the new 9M317 missile differed from the 9M38 in its shorter wing chord length.

In addition to the use of an improved missile, it was planned to introduce a new means into the air defense system - a radar station for illuminating targets and guiding missiles with the installation of an antenna at a height of up to 22 meters in the working position (a telescopic device was used). With the introduction of this radar station, the combat capabilities of the air defense system to destroy low-flying targets, such as modern cruise missiles, are significantly expanded.

The Buk-M1-2 complex includes a command post and two types of firing sections:
— four sections, including one modernized self-propelled firing unit each, carrying four guided missiles and capable of firing four targets simultaneously, and a launcher-loading unit with 8 guided missiles;
— two sections, including one illumination and guidance radar station, which can also provide simultaneous fire at four targets, and two launch-loading installations (each with eight guided missiles).

Two versions of the complex were developed - mobile on GM-569 tracked vehicles (used in previous modifications of the Buk air defense system), as well as transported by KrAZ vehicles and on road trains with semi-trailers. IN latest version The cost decreased, but maneuverability deteriorated and the deployment time of an anti-aircraft missile system from the march increased from 5 minutes to 10-15 minutes.

In particular, the Start MKB, during the modernization of the Buk-M air defense system (Buk-M1-2, Buk-M2 complexes), developed the 9A316 launcher-loader and the 9P619 launcher on a tracked chassis, as well as PU 9A318 on a wheeled chassis.

The process of development of the Kub and Buk families of anti-aircraft missile systems as a whole is an excellent example of evolutionary development military equipment and weapons that provide a continuous increase in the air defense capabilities of the ground forces at relatively low cost. This path of development, unfortunately, creates the prerequisites for a gradual technical backwardness.

For example, even in promising versions of the Buk air defense system, a more reliable and safe scheme for the continuous operation of missiles in a transport and launch container, an all-aspect vertical launch of guided missiles, introduced in other second-generation anti-aircraft missile systems, have not found application. But, despite this, in difficult socio-economic conditions, the evolutionary path of development has to be considered as the only possible one, and the choice made by the developers of the complexes of the Buk and Kub families is the right one.

Main characteristics of the BUK type air defense system:
Name – “Buk” / “Buk-M1”;
Damage zone in range - from 3.5 to 25-30 km / from 3 to 32-35 km;
Damage zone in height – from 0.025 to 18-20 km / from 0.015 to 20-22 km;
Damage zone by parameter – up to 18 / up to 22;
The probability of hitting a fighter with one guided missile is 0.8..0.9 / 0.8..0.95;
The probability of hitting a helicopter with one guided missile is 0.3..0.6 / 0.3..0.6;
Probability of hitting a cruise missile – 0.25..0.5 / 0.4..0.6;
The maximum speed of targets hit is 800 m/s;
Reaction time - 22 seconds;
Anti-aircraft guided missile flight speed - 850 m/s;
Rocket mass – 685 kg;
Warhead weight - 70 kg;
Target channel – 2;
SAM channel (per target) – up to 3;
Expansion/collapse time – 5 minutes;
The number of anti-aircraft guided missiles on a combat vehicle is 4;
Year of adoption: 1980/1983.

/Alex Varlamik, based on materials en.wikipedia.org And topwar.ru /

The air defense systems of the Buk family in the seventies were recognized as one of the most effective means of air defense. Today, the Russian army is armed with several modifications of such military equipment. The article contains information about the tactical and technical characteristics and design of the Buk-M2 anti-aircraft missile system.

History of creation

On January 13, 1972, the Council of Ministers of the USSR adopted a resolution on the start of design work to create new promising Buk anti-aircraft systems. Soviet gunsmiths were given the task of creating a new military complex to replace the already used 2K12 “Cube”. In 1979, after successful tests, this air defense system (GRAU index -9K37) was adopted by the Soviet army. Started right away design work for its modernization. The result of such activities was the creation in 1982 of a new military complex - Buk-M1. Unlike the basic version, it had an increased affected area. In addition, the upgraded complex could recognize three classes of targets: airplanes, helicopters and ballistic missiles. This military system became the first air defense system supplied to foreign customers. Finland received several units of such equipment. The air defense system entered service with the Soviet army in 1983. From 1993 to 1996, intensive modifications were carried out on the 9K37 project. The designers created a transitional modification of the Buk-M1-2.

Work to increase the range and height of hitting targets did not stop there. It was planned to create a system that would have improved characteristics. As a result of the modernization, a new military complex was designed, known as the Buk-M2 (a photo of the installation is presented in the article). In the USA, this air defense system is classified as “Grizzly-17”.

Getting to know the system

"Buk-M2" is a self-propelled, highly mobile and multifunctional anti-aircraft missile system designed for medium-range destruction. The air defense missile system was designed under the leadership of the famous designer of the Instrument Engineering Research Institute E. Pigin. Unlike the previous modification, a new universal missile 9M317 was developed for the Buk-M2 anti-aircraft missile system.

The purpose of the military installation

The mission of the Buk-M2 air defense system is as follows:

  • Protect ground facilities and troops from enemy air strikes, including cruise missiles.
  • Strike at air targets located at low and medium altitudes (from 30 to 18 thousand meters).

Design, characteristics

According to military experts, the most formidable air defense missile system, the 9M317 missile, was developed for the Buk-M2. It is designed for a range of up to 50 thousand meters. Length - 5.5 m. The mass of the rocket is 715 kg. Movement speed - 1230 m/s. The wingspan is 86 cm. During the explosion of an anti-aircraft guided missile, objects within a radius of 17 m are damaged. The 9M317 is equipped with an inertial-corrected control system, for which a new semi-active Doppler radar seeker 9E420 was created. The equipment is equipped with a rod warhead weighing 70 kg and a dual-mode solid propellant rocket engine.

Judging by the reviews of military experts, the missile, upon completion of complete assembly, is provided with a high level of reliability. Its service life is at least ten years. During this time, missiles are not checked.

Storage and transportation of the plant to its place combat use produced in special fiberglass containers. 9M317 are effective at any time of the year. The rocket is not susceptible to precipitation, humidity and temperature.

What targets do 9M317 missiles hit?

The Buk-M2 complexes, equipped with 9M317, hit the following enemy aviation targets:

  • Modern and promising maneuvering aircraft. Chance of defeat: 95%.
  • Helicopters providing fire support. Chance of destroying hovering helicopters: up to 40%.
  • Hovering, tactical ballistic, cruise and aircraft missiles. Optimal altitude: 20 km. The probability of destroying tactical missiles is 70%, and cruise missiles: 80%.
  • Aerial bombs are destroyed by an anti-aircraft guided missile at an altitude of up to 20 km.
  • Enemy surface and ground radiocontrast targets.

The designers managed to expand the combat capabilities of the 9M317 by creating for it new mode work. If it is necessary to destroy any surface or ground targets in the missiles, the remote fuses are switched off.

About combat installations 9A317

In addition to anti-aircraft guided missiles, the Buk-M2 is equipped with self-propelled and towed firing systems. For self-propelled guns (SOU) 9A317, tracked chassis GM-569 are provided. These settings are used for detection, identification, auto-tracking and target type recognition. In addition, with the help of the SOU, the flight mission is practiced, radio-correcting commands are transmitted to the missile, and the firing result is evaluated. 9A317 can attack an object both as part of an air defense system and independently.

The SDA is a phased array antenna with electronic beam scanning. The target detection range is 20 km. The firing installation is capable of detecting up to 10 objects and firing simultaneously at 4 of them. An optical-electronic system and CCD-matrix television channels have been developed for the SOU. The installation is reliably protected from radio frequency interference and operates around the clock, which has a positive effect on the “survivability” of the air defense system. The SOU weighs 35 tons. Comes with four missiles. The crew consists of 4 people.

About the launch-loading installation 9A316

The Buk-M2 ROM is used as a transport-loading vehicle and launcher. 9A316 carries out pre-launch preparation and launch of anti-aircraft guided missiles.

This ROM is installed on the GM-577 tracked chassis. Wheeled semi-trailers with tractors are provided for towing. The launch supports are equipped with four missiles. Transport supports also have the same number of missiles. ROMs are charged within 13 minutes. The installation weighs 38 tons. Combat crew of 4 people.

About the controls

The anti-aircraft missile system is equipped with:

  • Command post 9S510. Transported using a tracked chassis or a wheeled semi-trailer using a tractor. The reaction time takes no more than 2 seconds. Weighs up to 30 tons. There are 6 people in the crew.
  • Radar station (radar) 9С36, which detects targets and guides missiles in wooded areas. The station is equipped with an antenna that rises to a height of up to 22 meters. The antenna is a phased array that provides electronic scanning. The station is installed on tracked chassis or on wheeled semi-trailers with tractors. The radar detects a target at a distance of up to 120 km. The station is capable of simultaneously detecting up to 10 targets, identifying four priority ones. On tracked chassis the station weighs up to 36 tons, on wheeled ones - 30 tons. The crew has four people.

  • Radar station 9S18M1-3, performing target detection. It is a phased waveguide-slotted grating. The station operates in several stages. First, the airspace is scanned by a beam in the vertical plane. Then the received data is transmitted to the command post using telecode lines. Detection range - 160 km. The review lasts for 6 seconds. Especially for automatic protection against active interference, the station is provided with instantaneous pulse adjustment and blocking of range intervals. The station weighs up to 30 tons. To transfer it from a combat position to a traveling position and vice versa, five minutes is enough. The crew includes three people.

Characteristics of Buk-M2

  • The combat vehicle weighs 35.5 tons.
  • Engine power is 710 hp. With.
  • Cross-country speed - 45 km/h.
  • The time to deploy the Buk-M2 is up to five minutes.
  • Shooting is carried out at a speed of 4 seconds.
  • Reaction time - up to 10 seconds.
  • Crew - three people.
  • Fire from the Buk-M2 complexes is carried out under the control of operators and autonomously.
  • The air defense system is capable of simultaneously firing at 24 enemy aircraft targets.
  • The anti-aircraft missile launcher hits approaching targets at a speed of 1100 m/s, and receding targets at 400 m/s.
  • The complex has an operational life of up to 20 years.

Production

Due to its high performance, this air defense system was immediately approved by the expert commission and adopted by the Soviet army. However, as a result of the collapse Soviet Union and the beginning of the difficult economic situation in the country, mass production of the complexes was suspended. They began equipping the Russian air defense system with air defense missile systems only in 2008. The Russian army currently has 300 Buk-M2 units in service. Their location was the Alkino and Kapustin Yar military training grounds. The production of Buk-M2 anti-aircraft missile systems is carried out at the Ulyanovsk Mechanical Plant. A number of complex works were carried out at the enterprise to reorganize technological processes and retool equipment. The plant was replenished with a workshop where antenna systems are manufactured. In addition, the training and retraining centers opened at the enterprise provide training for Russian and foreign specialists. A large number of SAM data is produced for export. In 2011, 19 Buk-M2 units were delivered to the Syrian army. Venezuela owns two Russian complexes. The exact number of air defense systems in Iraq and Azerbaijan is unknown.

Finally

Today, in any military conflict, enemy aircraft attack primarily air defense systems. This can be successfully countered by being armed with the most modern anti-aircraft missile systems.

"Buk-M2", despite all the undeniable advantages of the installation, continues to be intensively refined and improved. The Buk family already includes modernized models M2E, M3 and M4.

Today, Russian short- and medium-range air defense systems remain one of the most effective air defense systems at the operational-tactical and tactical levels. We are talking about the air defense systems "Tunguska-M1" (missile and artillery) and "Buk-M2" and its export modification "Buk-M2E" (missile). These complexes are still significantly superior to their foreign counterparts in terms of tactical and technical characteristics, as well as in terms of cost/effectiveness criteria. Next we will talk about the Buk-M2E medium-range complex.

The development of this air defense system was fully completed already in 1988, however, due to the collapse of the USSR and the difficult economic situation in the country, its serial production was not launched. After 15 years, all design documentation for this complex was modified to accommodate a modern element base. Since 2008, the complex has been in service with the Russian army and is being supplied to the troops. The export version of the Buk-M2E complex was delivered to Venezuela, Syria and Azerbaijan. At the same time, Syria acted as the starting customer for this complex; the contract was concluded in 2007 and is estimated at $1 billion. All systems under this contract have already been delivered.

The Buk-M2E medium-range air defense system belongs to the 3rd generation systems (according to the NATO codification SA-17 “Grizzly”). Due to the use in this model of a complex of modern phased antenna arrays, the number of simultaneously tracked air targets increased to 24. The introduction into the air defense complex of an illumination and guidance radar with an antenna post, which can be raised to a height of up to 21 m, ensured an increase in the effectiveness of the complex in the fight against low flying targets.

The main manufacturer of this anti-aircraft missile system is Ulyanovsk Mechanical Plant OJSC. Lead developer design documentation for the main combat weapons and the Buk-M2E complex as a whole is OJSC Tikhomirov Research Institute of Instrument Engineering (Zhukovsky). The development of design documentation for the SOC - target detection station 9S18M1-3E - was carried out by NIIIP OJSC (Novosibirsk).

The Buk-M2E complex is a modern multi-purpose medium-range air defense system, which is characterized by high mobility. This anti-aircraft missile system is able to ensure the successful solution of combat missions in any situation, even in conditions of active radio countermeasures from the enemy. In addition to various aerodynamic targets, the air defense system is able to combat a wide range of missiles: cruise missiles, tactical ballistic missiles, anti-radar missiles, and special air-to-surface missiles. It can also be used to destroy naval surface targets of the class missile boat or a destroyer. The complex is also able to provide shelling of ground-based radio-contrast targets.

Automated control of the conduct of combat operations of the Buk-M2E complex is carried out using a command post (CP), which receives necessary information about the air situation from a target detection station (SOC) or a higher command post (VKP). The command post is responsible for transmitting control and target designation commands to 6 batteries using lines technical communications. Each battery of the complex consists of the 1st self-propelled firing unit (SOU) with 4 missiles and the 1st launch-loading unit (PZU) attached to it; the battery may also include 1 illumination and guidance radar (RPN).

Target detection radar

Firing of air targets accompanied by a complex is carried out using both single and salvo launches of missile defense systems. The Buk-M2E air defense system uses highly effective anti-aircraft guided missiles with solid fuel rocket engine, possessing combat equipment that is flexibly adaptable to various types of targets. The use of these missiles makes it possible to confidently hit air targets over the entire range of the complex: from 3 to 45 km in range, from 0.015 to 25 km in altitude. At the same time, the missile defense system is able to provide a flight altitude of up to 30 km and a flight range of up to 70 km.

The Buk-M2E air defense system uses the 9M317 missile defense system. This missile uses an inertial-corrected control system, which is complemented by a nose-mounted semi-active Doppler radar homing head 9E420. The missile's warhead is rod-based, its mass is 70 kg, the radius of the area affected by fragments is 17 m. The maximum flight speed of the missile is up to 1230 m/s, withstandable overloads are up to 24g. The total weight of the 9M317 missile defense system is 715 kg. The rocket uses a dual-mode solid propellant rocket engine. Its wingspan is 860 mm. The missile has a high level of reliability. A fully equipped and assembled rocket does not require any adjustments or checks throughout its entire service life, which is 10 years.

The complex uses modern phased array antennas (PAA), which have an effective command control method, which allows the air defense system to simultaneously track up to 24 different air targets, which can be hit with a minimum time interval. The reaction time of the complex does not exceed 10 seconds, and the probability of hitting an aircraft that does not perform evasive maneuvers is 0.9-0.95. At the same time, the real effectiveness of all modern operational-tactical air defense systems is largely determined by their capabilities to implement efficient work on missiles. "Buk-M2E" is able to effectively destroy such targets with an effective reflective surface (ERS) of up to 0.05 m2 with a probability of destruction of 0.6-0.7. The maximum speed of the affected ballistic missiles is up to 1200 m/s.

The destruction of enemy cruise missiles and other targets, for example, drones flying at low and extremely low altitudes in difficult, rugged and wooded terrain, is ensured by the air defense system due to the presence in its composition of a special illumination and guidance radar (RPN), equipped with an antenna post, raised to a height of 21 m.

In 2009 and 2010, the complex underwent real testing in conditions as close as possible to combat conditions, with extensive, multilateral firing and flight tests carried out at the training grounds of the Russian Ministry of Defense, as well as foreign customers of the complex. The Buk-M2E air defense system is able to operate in the most difficult weather and meteorological conditions.

For him, air temperatures up to +50°C, wind gusts up to 25-27 m/s, and increased air dust are not a hindrance. The modern hardware and software implementation of anti-jamming channels used in the complex allows the complex's combat assets to operate confidently even in conditions of strong noise suppression with barrage interference with a power of up to 1000 W/MHz. During the tests, firing was carried out at both single and multiple targets simultaneously located in the affected area of ​​the complex. At the same time, targets of various classes and purposes were fired upon. The tests became a real test of the maximum capabilities of the Russian air defense system and confirmed its high combat potential and compliance with the tactical and technical characteristics that were laid down by the designers at the development stage.

Target illumination and missile guidance radar

Placing the combat assets of the Buk-M2E air defense system on high-speed self-propelled tracked chassis (wheeled ones can also be used) provides the ability to quickly roll up and deploy the complex, this standard is within 5 minutes. To change position with all the equipment turned on, the complex requires no more than 20 seconds, which indicates its high mobility. On highways, the combat vehicles of the complex can move at speeds of up to 65 km/h, and on dirt roads - 45 km/h. The power reserve of the combat vehicles included in the complex is 500 km.

At the same time, the Buk-M2E air defense system is a 24-hour air defense system. The main combat weapon of the complex - the self-propelled gun - operates in 24-hour mode through the use of an optical-electronic system, which is built on the basis of a CCD-matrix television and sub-matrix thermal imaging channels. The use of these channels can significantly increase the survivability and noise immunity of the complex.

The Buk-M2E air defense system can be operated in a wide variety of climatic zones; at the request of the customer, the vehicles are equipped with air conditioners. The combat vehicles of the complex can be transported without any restrictions (distance and speed) by all types of transport: rail, water, air.

Tactico -specifications Buk-M2E complex:
Range of destruction of air targets:
maximum - 45 km;
minimum - 3 km.
Air target engagement altitude:
maximum - 25 km;
minimum - 0.015 km.
The number of tracked targets is 24.
The maximum speed of targets hit is 1100 m/s (approaching), 300-400 m/s (retreating).
Probability of hitting a target with one missile:
tactical aircraft/helicopter - 0.9-0.95;
tactical ballistic missile - 0.6-0.7.
Number of missiles - 4 pcs.
The reaction time of the complex is 10 s.
The rate of fire is once every 4 s.
Deployment time to combat position - 5 minutes.

Information sources:
http://otvaga2004.ru/kaleydoskop/kaleydoskop-miss/buk-m2e-i-tunguska-m1
http://rbase.new-factoria.ru/missile/wobb/buk-2m/buk-2m.shtml
http://bastion-karpenko.ru/buk-m2
http://army-news.ru/2011/01/zenitnyj-kompleks-buk-m2e
http://ru.wikipedia.org

The development of the Buk complex was started according to the Decree of the Central Committee of the CPSU and the Council of Ministers of the USSR dated January 13, 1972 and provided for the use of cooperation between developers and manufacturers, the basic composition corresponding to that previously involved in the creation of the Kub air defense system. At the same time, the development of the M-22 Uragan air defense system was determined for Navy using the same missile defense system as the Buk complex.

The military air defense system "Buk" was intended to fight in radio countermeasures against aerodynamic targets flying at speeds up to 830 m/s, at medium and low altitudes, maneuvering with overloads of up to 10-12 units, at ranges up to 30 km, and in the future - With ballistic missiles"Lance."

Developers of the complex and its systems

The developer of the Buk air defense system as a whole was identified as the Research Institute of Instrument Engineering ( CEO VC. Grishin). The chief designer of the 9K37 complex as a whole was appointed A.A. Rastov, the command post (CP) 9S470 - G.N. Valaev (then - V.I. Sokiran), the self-propelled firing systems (SOU) 9A38 - V.V. Matyashev, semi-active Doppler homing head 9E50 for missiles - I.G. Akopyan.

Launch-loading units (PZU) 9A39 were created at the Start Machine-Building Design Bureau (MCB) under the leadership of A.I. Yaskina. Unified tracked chassis for the complex's combat vehicles were created at OKB-40 of the Mytishchi Machine-Building Plant by a team headed by N.A. Astrov. The development of 9M38 missiles was entrusted to the Sverdlovsk machine-building design bureau "Novator" headed by L.V. Lyulev. The detection and target designation station (SOTs) 9S18 (“Dome”) was developed at the Research Institute of Measuring Instruments under the leadership of chief designer A.P. Vetoshko (then Yu.P. Shchekotov).

In the west the complex received the designation SA-11 "Gadfly".

Compound

The Buk air defense system includes the following combat weapons:

  • SAM 9M38;
  • Command post 9S470;
  • Detection and target designation station 9S18 "Dome";
  • Self-propelled firing system 9A310;
  • Start-loading installation 9A39.

SAM 9M38

The 9M38 anti-aircraft missile is made using a dual-mode solid fuel engine (total operating time is about 15 seconds), according to a normal aerodynamic configuration with “X” placement of low aspect ratio wings.

In the front part of the missile, a semi-active homing head, autopilot equipment, power supplies and a warhead are successively located. To reduce the dispersion of alignment over flight time, the combustion chamber of the solid propellant rocket engine is located closer to the middle of the rocket and the nozzle block includes an elongated gas duct, around which the steering drive elements are located. The rocket has no parts that separate during flight. A new seeker with a combined control system was developed for the rocket. The complex implemented homing missiles using the proportional navigation method. The warhead is a high-explosive fragmentation type.

Command post 9S470

The 9S470 command post located on the GM-579 chassis provided:

  • receiving, displaying and processing information about targets received from the 9S18 detection and target designation station and six self-propelled firing systems, as well as from higher command posts;
  • selection of dangerous targets and their distribution between self-propelled firing installations in manual and automatic modes, setting their sectors of responsibility, displaying information about the presence of missiles on them and on launch-loading installations, about the letters of the illumination transmitters of self-propelled firing installations, about their work on targets, about operating modes of the detection and target designation station;
  • organizing the operation of the complex in conditions of interference and the enemy’s use of anti-radar missiles;
  • documentation of work and training in calculation of CP.

The command post processed messages about 46 targets at altitudes of up to 20 km in a zone with a radius of 100 km per review cycle of the detection and target designation station and issued up to 6 target designations to self-propelled firing systems with an accuracy of 1° in azimuth and elevation, 400-700 m in range.
The weight of the command post with a combat crew of 6 people did not exceed 28 tons.

Detection and target designation station 9S18 ("Dome")

Three-coordinate coherent-pulse detection and target designation station 9S18 (“Dome”) of the centimeter range with electronic scanning of the beam in a sector according to the elevation angle (set to 30° or 40°) and mechanical (circular or in a given sector) rotation of the antenna in azimuth (using an electric drive or hydraulic drive) was designed to detect and identify air targets at ranges of up to 110-120 km (45 km at a flight altitude of 30 m) and transmit information about the air situation to the 9S470 control post.

The rate of viewing the space, depending on the established sector in elevation and the presence of interference, ranged from 4.5 to 18 s for all-round viewing and from 2.5 to 4.5 s for viewing in a 30° sector. Radar information was transmitted via telecode line to the 9S470 control panel in the amount of 75 marks during the review period (4.5 s). The root mean square errors (RMS) of measuring target coordinates were: no more than 20" - in azimuth and elevation, no more than 130m - in range, range resolution no worse than 300m, in azimuth and elevation - 4°.

To protect against targeted interference, we used tuning of the carrier frequency from pulse to pulse, from response ones - the same and blanking of range intervals along the auto-recording channel, from non-synchronous pulses - changing the slope of linear-frequency modulation and blanking of range sections. With noise barrage interference from self-cover and external cover at specified levels, the detection and target designation station ensured detection of a fighter aircraft at a distance of at least 50 km. The station ensured tracking of targets with a probability of at least 0.5 against the background of local objects and in passive interference using a moving target selection circuit with automatic wind speed compensation. The station was protected from anti-radar missiles by implementing a software tuning of the carrier frequency in 1.3 s, switching to circular polarization of the sounding signals or to the intermittent radiation (flicker) mode.

The station included an antenna post consisting of a reflector with a truncated parabolic profile, a feed in the form of a full-flow line that provides electronic scanning of the beam in the elevation plane, a rotating device, a device for folding the antenna into the stowed position; transmitting device (with an average power of up to 3.5 kW); receiving device (with a noise figure of no more than 8) and other systems.

The time for transferring the station from the traveling position to the combat position was no more than 5 minutes, and from standby mode to working mode - no more than 20 seconds. The mass of the station with a crew of 3 people is no more than 28.5 tons.

Self-propelled firing system 9A310

The transfer time from traveling to combat position was no more than 5 minutes. The time for transferring the installation from standby mode to operating mode, in particular, after changing the position with the equipment turned on, was no more than 20 s. Loading a 9A310 self-propelled firing system with four missiles from a launcher-loading installation was carried out in 12 minutes, and from a transport vehicle in 16 minutes.

The weight of a self-propelled firing system with a combat crew of 4 people did not exceed 32.4 tons. The length of the self-propelled firing system was 9.3 m, width - 3.25 m (9.03 m in working position), height - 3.8 m (7.72 m).

Launch-loading installation 9A39

The 9A39 launcher-loading unit, located on the GM-577 chassis, was intended for transporting and storing eight missiles (4 each on the launcher and on fixed cradle), launching 4 missiles, self-loading its launcher with four missiles from the cradle, self-loading with eight missiles from a transport vehicle ( in 26 minutes), from ground cradles and from transport containers, loading and unloading a self-propelled firing system with four missiles. In addition to the launching device with a power servo drive, a crane and cradle, the launch-loading installation included a digital computer, navigation, topographical and orientation equipment, telecode communication, energy supply and power supply units. The mass of the installation with a combat crew of 3 people is no more than 35.5 tons.
The length of the launch-loading installation was 9.96 m, width - 3.316 m, height - 3.8 m.

Performance characteristics

Damage zone, km:
- by range
- in height
- by parameter

3,5..25-30
0,025..18-20
before 18
Probability of hitting a target with one missile
- fighter type
- helicopter type
- cruise missile type

0,8..0,9
0,3..0,6
0,25..0,5
Maximum speed of targets hit m/s 800
Reaction time, s: 22
SAM flight speed, m/s 850
Rocket mass, kg 685
Weight of warhead, kg 70
Rocket length, m 5.55
Case diameter, m 0.4
Starting weight, kg 685
Warhead weight, kg; 70
Channel by target 2
SAM channel 3
Expansion (collapse) time, min 5
Number of missiles on a combat vehicle 4

Testing and operation

Joint tests of the Buk complex with its full set of equipment were carried out from November 1977 to March 1979 at the Emben test site (head of the test site V.V. Zubarev) under the leadership of a commission headed by Yu.N. Pervov.

The command post of the complex received information about the air situation from the command post of the anti-aircraft missile system "Buk" (ASU "Polyana-D4") and from the detection and target designation station, processed it and issued it to self-propelled firing units, which searched and captured targets for automatic tracking. Upon entry The missiles were launched into the affected area. The missiles were guided using the proportional navigation method, which ensures high accuracy of pointing at the target. When approaching the target, the seeker issued a command to the radio fuse for close arming. When approaching the target at a distance of 17 m, the warhead was detonated on command. If the radio fuse did not activate, the missile defense system self-destructed, and if the target was not hit, a second missile defense system was launched at it.

Compared to previous systems of similar purposes (Kub-M3 and Kub-M4 air defense systems), the Buk complex had higher combat and operational characteristics and provided:

  • simultaneous firing by a division of up to six targets, and, if necessary, carrying out up to six independent combat missions with the autonomous use of self-propelled firing systems;
  • greater reliability of target detection due to the organization of a joint survey of space by a detection and target designation station and six self-propelled firing systems;
  • increased noise immunity due to the use of an on-board seeker computer and a special type of illumination signal;
  • greater efficiency in hitting a target due to the increased power of the missile defense warhead.

Based on the results of firing tests and modeling, it was determined that the Buk air defense system provides fire at non-maneuvering targets flying at speeds of up to 800 m/s at altitudes from 25 m to 18 km, at ranges from 3 to 25 km (up to 30 km at target speeds up to 300 m/s) with a course parameter of up to 18 km with a probability of hitting one missile defense equal to 0.7-0.8. When firing at targets maneuvering with overloads of up to 8 units, the probability of defeat was reduced to 0.6.

Organizationally, the Buk air defense systems were consolidated into anti-aircraft missile brigades, which included: command post (combat control point of the brigade from the Polyana-D4 automated control system), four anti-aircraft missile division with their 9S470 command post, 9S18 detection and target designation station, communications platoon and three anti-aircraft missile batteries with two 9A310 self-propelled firing systems and one 9A39 launcher-loader in each, as well as units technical support and service.

The Buk anti-aircraft missile brigade was to be controlled from the army's air defense command post.

The Buk complex was adopted by the Air Defense Forces of the North in 1980.

The 9K37 Buk anti-aircraft missile system has been in service with the Soviet army since the late 70s, and now the Russian army, being one of the most popular air defense systems.

Despite its age, numerous modernizations of this weapon allow it to remain effective and relevant even today.

History of creation

On January 13, 1972, it was decided to replace the outdated 2K12 "Cube" air defense system with a new weapon using standardized missiles together with the M-22 "Uragan" naval system.

The development started at the Tikhomirov Research Institute of Instrument Making, the work was headed by A.A. Rastov. Due to the rush, they planned to put the complex into operation in parts. First came the 2K12M4 Kub-M4 self-propelled firing system, which used the recently created 9M38 anti-aircraft missiles. It was put into service in 1978. The main differences from its predecessor were 10 target channels and increased limits for the height and speed of air targets.

  • Self-propelled firing system 9A310;
  • 9M38 anti-aircraft missiles;
  • command post 9С470;
  • charging installation 9A39.

The created anti-aircraft missile system was tested at the end of 1977, which ended in 1979 with its entry into service.

Peculiarities

The Buk turned out to be capable of destroying air targets flying at altitudes from 25 to 18,000 meters, located at a distance of 3 to 25 kilometers from the complex with a probability of 0.6.

Each part of the complex was located on a standardized tracked platform with high cross-country ability.

"Buk-M1"

After a short period of time, modernization of the complex began, culminating in the creation of the new Buk-M1 air defense system. It was distinguished by an increased area and probability of destruction, a target recognition function and less vulnerability to anti-radar missiles.

Designed to combat enemy aircraft, helicopters, cruise missiles and drones. It is used to cover various types of troops or ground objects from massive enemy air raids. Able to work in conditions where the enemy widely uses electronic suppression and in any weather.

Device

A self-propelled firing system is capable of operating alone, while its capabilities are extremely limited. Therefore, it is customary to consider the complex as a whole, in a fully combat-ready state to cover the area from air threats.

The Buk-M1 complex consists of:

  • self-propelled firing system 9A310M1;
  • charging installation 9A39M1;
  • target detection station 9S18;
  • command post 9S470M1.

All anti-aircraft missile systems are built on the GM-569 tracked chassis, which was chosen due to such features as good maneuverability and maneuverability, which allows you to spend a minimum amount on deploying and putting the complex into combat condition.

After deployment, the highly noise-resistant target detection station 9S18 “Dome” radar begins to continuously scan airspace in the centimeter range at a distance of up to 120 and a range of up to 20 kilometers.

Also, each of the 9A310 self-propelled firing systems has its own radar station operating in the centimeter range, computing equipment and a communication device, which allows it to independently scan the airspace in search of a target and transmit information to the command post.

The signal about detected targets is sent to the 9S470 command post, which is capable of simultaneously receiving and processing data on 46 targets. Next, he transfers up to 6 tasks to each of the 9A310 firing installations.

Anti-aircraft missile 9M38

Development began in 1973, and in 1976 the missile entered service with the Soviet army as part of the Buk.

This is a solid-fuel single-stage anti-aircraft missile designed to operate for up to 15 seconds. Its dimensions are strictly limited due to the fact that the development was carried out not only for land systems, but also for the M-22 “Hurricane” system for the Navy.

It has a semi-active homing head and carries a high-explosive fragmentation warhead weighing 70 kg. The detonation is carried out by a charge weighing 34 kg at a distance of 16 meters from the target.

Designed to destroy highly maneuverable targets located at a distance from 3500 to 32000 m, at altitudes from 25 to 20000 m, and can withstand overloads of up to 19g.

After launch, the flight course is indicated by radio signals from the firing installation; when approaching the target, the homing head comes into play.

9K317 "Buk-M2"

By the end of the 1980s, a modification appeared using modern 9M317 missiles. The use of this missile was supposed to significantly increase the range and altitude of the targets hit, and it was also planned to use improved equipment on all vehicles of the complex.

The 9M317 received smaller wings, the firing range reached 45,000 m at an altitude of 25,000. Its fuse received 2 modes, which made it possible to carry out detonations not only at a distance from the target, but also upon contact, making it possible to fight surface and ground enemies.

The 9A317 self-propelled firing system received new equipment, which made it possible to simultaneously detect 10 targets and attack 4 at once.

The updated 9S510 command post has the ability to track 60 targets at once and issue 36 target indications simultaneously. In this case, the time from receiving information to transmission to firing installations is no more than 2 seconds.

The 9S18M1-3 detection and target designation station is equipped with a phased array antenna, which allows it to detect air targets at a distance of up to 160,000 m. It is resistant to various types of enemy interference.

Additionally, a 9S36 missile illumination and guidance station was added to the complex. It is a phased array antenna raised by a retractable mast to a height of 22 meters, which improves performance and detects targets at a distance of 120 km. The 9S36 electronic equipment is capable of tracking 10 targets and issuing commands to fire at 4 of them.

Comprehensive improvements to the 9K317 Buk-M2 complex made it possible to increase the interception distance of aircraft and helicopters to 50,000 m, and the altitude to 25,000 m.

The missile interception range has increased to 20,000 m, and the altitude to 16,000. Use against ground and surface targets is also possible.

The country's deplorable economy in the early 90s did not allow the adoption of a new product; the army limited itself to the compromise Buk-M1-2 complex.

It was only in 2008 that the 9K317 Buk-M2 entered service with the Russian army, having been modified to suit our times.

SAM "Buk-M1-2 Ural"

As already mentioned, the most modern modification at that time was not adopted for service, so the army limited itself to a simplified version of the “Ural”. Development started in 1992 and ended in 1998 with the adoption of the Buk-M1-2 air defense system into service with our army.

The complex includes:

  • self-propelled firing system 9A310M1-2;
  • target detection station 9S18M1;
  • command post 9С470;
  • charging installation 9A38M1.

To increase stealth and camouflage, as well as increase capabilities, the 9A310M1-2 was equipped with a television-optical sight and a laser rangefinder, which made passive direction finding of the target possible.

SAM "Buk-M2E"

Export modification of the Buk-M2, characterized by improved electronic digital equipment. Modern equipment It works not only in combat, but also in training mode, which allows for the training of soldiers.

It is possible to use the usual tracked chassis or the wheeled MZKT-6922, which allows the customer to choose a more suitable option.

SAM "Buk-M3"

The development of a new modification of the air defense system became known not so long ago. It is planned to completely replace outdated electronics with modern digital equipment, and replace the missile with a modern 9M317M, launched from a container and with higher performance.

The exact characteristics are not known today, but approximate ones can be given. The self-propelled firing unit contains 6 containers with ready-to-launch missiles inside.

The estimated target engagement range is up to 75,000 m, the probability is 0.96.

Combat use

The Buk anti-aircraft missile system is in service with 9 countries, including Russia.

With the exception of the first Chechen war, where the complexes were used by the Russian army, other episodes can hardly be called successful for Russia. During the Georgian-Abkhaz conflict, the plane of the commander of the air defense of Abkhazia was mistakenly destroyed.

In South Ossetia, the Russian Air Force lost 4 aircraft due to Buk-M1 fire, in addition, in 2014, a Boeing 777 was destroyed over Ukraine, and some sources link this event to the use of the Buk.