Homemade biogas plant. How to produce biogas from manure: an overview of the basic principles and design of a production plant. Video on the topic

The technology is not new. It began to develop back in the 18th century, when Jan Helmont, a chemist, discovered that manure emits gases that are flammable.

His research was continued by Alessandro Volta and Humphrey Davy, who found methane in the gas mixture. At the end of the 19th century in England, biogas from manure was used in street lamps. In the mid-20th century, bacteria were discovered that produce methane and its precursors.

The fact is that three groups of microorganisms alternately work in manure, feeding on the waste products of previous bacteria. The first to start working are acetogenic bacteria, which dissolve carbohydrates, proteins and fats in the slurry.

After processing the nutrient supply by anaerobic microorganisms, methane, water and carbon dioxide are formed. Due to the presence of water, biogas at this stage is not able to burn - it needs purification, so it is passed through treatment facilities.

What is biomethane

The gas obtained as a result of the decomposition of manure biomass is an analogue natural gas. It is almost 2 times lighter than air, so it always rises. This explains the artificial production technology: free space is left at the top so that the substance can be released and accumulate, from where it is then pumped out for use for one’s own needs.

Methane greatly influences the greenhouse effect - much more than carbon dioxide - 21 times. Therefore, manure processing technology is not only an economical, but also an environmentally friendly way to dispose of animal waste.

Biomethane is used for the following needs:

  • cooking;
  • for heating a private house.

Biogas releases a large number of heat. 1 cubic meter is equivalent to burning 1.5 kg of coal.

How is biomethane produced?

It can be obtained not only from manure, but also algae, plant matter, fat and other animal waste, and residues from the processing of raw materials from fish shops. Depending on the quality of the source material and its energy capacity, the final yield of the gas mixture depends.

The minimum amount of gas obtained is 50 cubic meters per ton of cattle manure. Maximum - 1,300 cubic meters after processing animal fat. The methane content is up to 90%.

One type of biological gas is landfill gas. It is formed during the decomposition of garbage in suburban landfills. The West already has equipment that processes waste from the population and turns it into fuel. As a type of business, it has unlimited resources.

Its raw material base includes:

  • food industry;
  • livestock farming;
  • poultry farming;
  • fisheries and processing plants;
  • dairies;
  • production of alcoholic and low-alcohol drinks.

Any industry is forced to dispose of its waste - it is expensive and unprofitable. At home, with the help of a small homemade installation, you can solve several problems at once: free heating of the house, fertilizer land plot high-quality nutrients left over from manure processing, freeing up space and eliminating odors.

Biofuel production technology

All bacteria that take part in the formation of biogas are anaerobic, that is, they do not need oxygen to function. To do this, completely sealed fermentation containers are constructed, the outlet pipes of which also do not allow air from the outside to pass through.

After pouring the raw liquid into the tank and raising the temperature to the required value, the bacteria begin to work. Methane begins to be released, which rises from the surface of the slurry. It is sent to special pillows or tanks, after which it is filtered and ends up in gas cylinders.

The liquid waste from bacteria accumulates at the bottom, from where it is periodically pumped out and also sent for storage. After this, a new portion of manure is pumped into the tank.

Temperature regime of bacteria functioning

To process manure into biogas, it is necessary to create suitable conditions for bacteria to work. some of them are activated at temperatures above 30 degrees - mesophilic. At the same time, the process is slower and the first product can be obtained after 2 weeks.

Thermophilic bacteria work at temperatures from 50 to 70 degrees. The time required to obtain biogas from manure is reduced to 3 days. In this case, the waste is a fermented sludge that is used in the fields as fertilizer for agricultural crops. There are no pathogenic microorganisms, helminths and weeds in the sludge, as they die when exposed to high temperatures.

Eat special kind thermophilic bacteria that are able to survive in environments heated to 90 degrees. They are added to raw materials to speed up the fermentation process.

A decrease in temperature leads to a decrease in the activity of thermophilic or mesophilic bacteria. In private households, mesophylls are more often used, since they do not require special heating of the liquid and gas production is cheaper. Subsequently, when the first batch of gas is received, it can be used to heat the reactor with thermophilic microorganisms.

Important! Methanogens do not tolerate sudden changes in temperature, so in winter they must be kept warm at all times.

How to prepare raw materials for pouring into the reactor

To produce biogas from manure, there is no need to specially introduce microorganisms into the liquid, because they are already found in animal excrement. You just need to maintain the temperature and add a new manure solution in time. It must be prepared correctly.

The humidity of the solution should be 90% (the consistency of liquid sour cream), Therefore, dry types of excrement are first filled with water - rabbit droppings, horse droppings, sheep droppings, goat droppings. Pig manure in its pure form does not need to be diluted, as it contains a lot of urine.

The next step is to break down the manure solids. The finer the fraction, the better the bacteria will process the mixture and the more gas will be released. For this purpose, the installations use a stirrer that is constantly running. It reduces the risk of a hard crust forming on the surface of the liquid.

Those types of manure that have the highest acidity are suitable for biogas production. They are also called cold - pork and cow. A decrease in acidity stops the activity of microorganisms, so it is necessary to monitor at the beginning how long it takes for them to completely process the volume of the tank. Then add the next dose.

Gas purification technology

When processing manure into biogas, the following is obtained:

  • 70% methane;
  • 30% carbon dioxide;
  • 1% impurities of hydrogen sulfide and other volatile compounds.

In order for biogas to become suitable for use on the farm, it must be cleaned of impurities. To remove hydrogen sulfide, special filters are used. The fact is that volatile hydrogen sulfide compounds, dissolving in water, form acid. It contributes to the appearance of rust on the walls of pipes or tanks if they are made of metal.

  • The resulting gas is compressed under a pressure of 9–11 atmospheres.
  • It is fed into a reservoir of water, where impurities are dissolved in the liquid.

IN industrial scale For cleaning, lime or activated carbon, as well as special filters, are used.

How to reduce moisture content

There are several ways to get rid of water impurities in gas yourself. One of them is the principle of a moonshine still. The cold pipe directs the gas upward. The liquid condenses and flows down. To do this, the pipe is laid underground, where the temperature naturally decreases. As it rises, the temperature also rises, and the dried gas enters the storage facility.

The second option is a water seal. After exiting, the gas enters a container with water and is cleaned of impurities there. This method is called one-stage, when biogas is immediately cleaned from all volatile substances and moisture using water.


Water seal principle

What installations are used to produce biogas?

If the installation is planned to be located near a farm, then the best option would be collapsible design, which is easy to transport to another place. The main element of the installation is a bioreactor into which raw materials are poured and the fermentation process occurs. Large enterprises use tanks volume 50 cubic meters.

In private farms, underground reservoirs are built as a bioreactor. They are laid out of brick in a prepared hole and coated with cement. Concrete increases the safety of the structure and prevents air from entering. The volume depends on how much raw material is obtained from domestic animals per day.

Surface systems are also popular at home. If desired, the installation can be disassembled and moved to another location, unlike a stationary underground reactor. Plastic, metal or polyvinyl chloride barrels are used as tanks.

By type of control there are:

  • automatic stations in which the filling and pumping out of waste raw materials is carried out without human intervention;
  • mechanical, where the entire process is controlled manually.

Using a pump, you can facilitate the emptying of the tank into which the waste after fermentation falls. Some craftsmen use pumps to pump gas from cushions (for example, car inner tubes) into a treatment facility.

Scheme of a homemade installation for producing biogas from manure

Before constructing a biogas plant on your site, you need to become familiar with the potential hazards that could cause the reactor to explode. The main condition is the absence of oxygen.

Methane is an explosive gas and can ignite, but to do so it must be heated above 500 degrees. If biogas mixes with air, overpressure will arise, which will rupture the reactor. Concrete may crack and will not be suitable for further use.

Video: Biogas from bird droppings

To prevent the pressure from tearing off the lid, use a counterweight, a protective gasket between the lid and the tank. The container is not completely filled - there should be at least 10% volume for gas release. Better – 20%.

So, to make a bioreactor with all the accessories on your site, you need to:

  • It is good to choose a place so that it is located away from housing (you never know).
  • Calculate the estimated amount of manure that animals produce daily. How to count - read below.
  • Decide where to lay the loading and unloading pipes, as well as a pipe for condensing moisture in the resulting gas.
  • Decide on the location of the waste tank (fertilizer by default).
  • Dig a pit based on calculations of the amount of raw materials.
  • Select a container that will serve as a reservoir for manure and install it in the pit. If a concrete reactor is planned, then the bottom of the pit is filled with concrete, the walls are lined with bricks and plastered with concrete mortar. After this, you need to give it time to dry.
  • The connections between the reactor and the pipes are also sealed at the stage of laying the tank.
  • Equip a hatch for inspection of the reactor. A sealed gasket is placed between it.

If the climate is cold, then before concreting or installing a plastic tank, consider ways to heat it. These can be heating devices or tape used in “warm floor” technology.

At the end of the work, check the reactor for leaks.

Gas quantity calculation

From one ton of manure you can get approximately 100 cubic meters of gas. Question: How much litter do pets produce per day?

  • chicken – 165 g per day;
  • cow – 35 kg;
  • goat – 1 kg;
  • horse – 15 kg;
  • sheep – 1 kg;
  • pig – 5 kg.

Multiply these figures by the number of heads and you get the daily dose of excrement to be processed.

More gas comes from cows and pigs. If you add energetically powerful plants such as corn, beet tops, and millet to the mixture, the amount of biogas will increase. Marsh plants and algae have great potential.

The highest is for waste from meat processing plants. If there are such farms nearby, then we can cooperate and install one reactor for everyone. The payback period for a bioreactor is 1–2 years.

Biomass waste after gas production

After processing manure in a reactor, the by-product is biosludge. During anaerobic processing of waste, bacteria dissolve about 30% of organic matter. The rest is released unchanged.

The liquid substance is also a by-product of methane fermentation and is also used in agriculture for root dressings.

Carbon dioxide is a waste fraction that biogas producers strive to remove. But if you dissolve it in water, then this liquid can also be beneficial.

Full utilization of biogas plant products

In order to completely utilize the products obtained after processing manure, it is necessary to maintain a greenhouse. Firstly, organic fertilizer can be used for year-round cultivation of vegetables, the yield of which will be stable.

Secondly, carbon dioxide is used as fertilizing - root or foliar, and its output is about 30%. Plants absorb carbon dioxide from the air and at the same time grow better and gain green mass. If you consult with specialists in this field, they will help you install equipment that converts carbon dioxide from liquid form into a volatile substance.

Video: Biogas in 2 days

The fact is that to maintain a livestock farm, the energy resources obtained can be a lot, especially in the summer, when heating the barn or pigsty is not needed.

Therefore, it is recommended to do one more profitable view activities - an environmentally friendly greenhouse. Remaining products can be stored in refrigerated rooms - using the same energy. Refrigeration or any other equipment can run on electricity generated by a gas battery.

Use as fertilizer

In addition to producing gas, the bioreactor is useful because the waste is used as a valuable fertilizer, which retains almost all nitrogen and phosphates. When manure is added to the soil, 30–40% of nitrogen is irretrievably lost.

To reduce the loss of nitrogen substances, fresh excrement is added to the soil, but then the released methane damages the root system of plants. After processing the manure, the methane is used for its own needs, and all nutrients are preserved.

After fermentation, potassium and phosphorus pass into a chelated form, which is absorbed by plants by 90%. If you look at it in general, then 1 ton of fermented manure can replace 70 - 80 tons of ordinary animal excrement.

Anaerobic processing preserves all the nitrogen present in manure, converting it into ammonium form, which increases the yield of any crop by 20%.

This substance is not dangerous for the root system and can be applied 2 weeks before planting crops in open ground, so that the organic matter has time to be processed by soil aerobic microorganisms.

Before use, the biofertilizer is diluted with water. in a ratio of 1:60. Both dry and liquid fractions are suitable for this, which after fermentation also goes into the waste raw material tank.

Per hectare you need from 700 to 1,000 kg/l of undiluted fertilizer. Considering that from one cubic meter of reactor area up to 40 kg of fertilizers are obtained per day, in a month you can provide not only your own plot, but also your neighbor’s, by selling organic matter.

What nutrients can be obtained after manure processing?

The main value of fermented manure as a fertilizer is the presence of humic acids, which, like a shell, retain potassium and phosphorus ions. Oxidizing in air during long-term storage, microelements lose their beneficial qualities, but during anaerobic processing, on the contrary, they gain.

Humates have a positive effect on the physical and chemical composition of the soil. As a result of adding organic matter, even the heaviest soils become more permeable to moisture. In addition, organic matter provides food for soil bacteria. They further process the residues that have not been eaten by anaerobes and release humic acids. As a result of this process, plants receive nutrients that are completely absorbed.

In addition to the main ones - nitrogen, potassium and phosphorus - the biofertilizer contains microelements. But their quantity depends on the source material - plant or animal origin.

Sludge storage methods

It is best to store fermented manure dry. This makes it more convenient to pack and transport. The dry substance loses less useful properties and can be stored closed. Although such fertilizer does not deteriorate at all over the course of a year, it must then be sealed in a bag or container.

Liquid forms must be stored in closed containers with a tight-fitting lid to prevent nitrogen from escaping.

How to store manure on the plot for fertilizing the garden: the best ways

Given theoretical basis producing methane gas from biomass by anaerobic digestion.

The role of bacteria in the gradual transformation of organic substances was explained with a description necessary conditions for the most intensive production of biogas. This article will provide practical implementations of biogas plants, with a description of some home-made designs.

Since energy prices are rising, and many property owners livestock farms and small farms there are problems with waste disposal, appeared on sale industrial complexes for the production of biogas and small biogas plants for private homes. Using search engines, an Internet user can easily find an affordable ready-made solution so that the biogas plant and its price meet the needs, get in touch with equipment suppliers and agree on the construction of a biogas generator at home or on the farm.

Industrial complex for biogas production

Bioreactor - the basis of a biogas plant

The container in which anaerobic decomposition of biomass occurs is called bioreactor, fermenter, or methane tank. Bioreactors can be completely sealed, with a fixed or floating dome, and have a diving bell design. Bell psychrophilic (not requiring heating) bioreactors have the form of an open reservoir with liquid biomass, into which a container in the form of a cylinder or bell is immersed, where biogas is collected.

The collected biogas puts pressure on the cylinder, causing it to rise above the tank. Thus, the bell also serves as a gas holder - a temporary storage facility for the generated gas.


Floating dome bioreactor

The disadvantage of the bell design of the biogas reactor is the impossibility of mixing the substrate and heating it during cold periods of the year. Also a negative factor is a strong odor, and unsanitary conditions due to the exposed surface of part of the substrate.

In addition, part of the resulting gas will escape into the atmosphere, polluting the environment. Therefore, these bioreactors are used only in artisanal biogas plants in poor countries with hot climates.


Another example of a floating dome bioreactor

To prevent pollution environment and eliminating unpleasant odors, the reactors of biogas plants for home and large industries have a fixed dome design. The shape of the structure does not matter much in the process of gas formation, but when using a cylinder with a dome-shaped roof, significant savings are achieved building materials. Bioreactors with a fixed dome are equipped with pipes for adding new portions of biomass and selecting spent substrate.


A type of fixed dome bioreactor

Main types of biogas plants

Since the most acceptable design is a fixed dome, most ready-made bioreactor solutions are of this type. Depending on the loading method, bioreactors have different designs and are divided into:

  • Portion-based, with a one-time loading of all biomass, and subsequent complete unloading after processing of the raw materials. The main disadvantage of this type of bioreactor is the uneven release of gas during substrate processing;
  • continuous loading and unloading of raw materials, thereby achieving uniform release of biogas. Thanks to the design of the bioreactor, during loading and unloading, the production of biogas does not stop and no leaks occur, since the pipes through which biomass is added and removed are made in the form of a water seal that prevents gas leakage.
Example of a batch bioreactor

Batch biogas reactors can have any design that prevents gas leakage. For example, at one time in Australia, channel methane tanks with an elastic inflatable roof were popular, where a slight excess pressure inside the bioreactor inflated a bubble made of durable polypropylene. When a certain pressure level inside the bioreactor was reached, a compressor was turned on, pumping out the produced biogas.


Channel bioreactors with elastic gas holder

The type of fermentation in this biogas plant can be mesophilic (low heating). Due to the large area of ​​the inflating dome, channel bioreactors can only be installed in heated rooms or in regions with a hot climate. The advantage of the design is that there is no need for an intermediate receiver, but the big disadvantage is the vulnerability of the elastic dome to mechanical damage.


Large channel bioreactor with elastic gas tank

IN Lately Batch bioreactors with dry fermentation of manure without adding water to the substrate are gaining popularity. Since manure has its own moisture, it will be sufficient for the life of organisms, although the intensity of reactions will decrease.

Dry-type bioreactors look like a sealed garage with tightly closing doors. Biomass is loaded into the reactor using a front-end loader and remains in this state until the full gas formation cycle is completed (about six months), without the need to add a substrate or mix it.


Batch bioreactor with loading through a hermetically sealed door

DIY biogas plant

It should be noted that in most bioreactors, as a rule, only the gas formation zone is sealed, and the liquid biomass at the inlet and outlet is under atmospheric pressure. Excessive pressure inside the bioreactor displaces part of the liquid substrate into the nozzles, which is why the level of biomass in them is slightly higher than inside the container.


The red lines in the diagram indicate the difference in levels in the bioreactor and pipes

These designs of homemade bioreactors are popular among folk craftsmen who independently make biogas plants with their own hands for the home, allowing for repeated manual loading and unloading of the substrate. When making bioreactors with their own hands, many craftsmen experiment with completely sealed containers, using several rubber tubes from the tires of large vehicles as a gas holder.


Drawing of a gas holder made from tractor inner tubes

In the video below, an enthusiast of homemade biogas production, using barrels filled with bird droppings as an example, proves the possibility of actually producing combustible gas at home by processing poultry house waste into useful fertilizer. The only thing that can be added to the design described in this video is that you need to install a pressure gauge and a safety valve on a homemade bioreactor.

Bioreactor productivity calculations

The amount of biogas is determined by the mass and quality of the raw materials used. On the Internet you can find tables that indicate the amount of waste produced by various animals, but for owners who have to remove manure every day, this theory is of no use, since thanks to their own practice they know the amount and mass of the future substrate. Based on the availability of raw materials renewable every day, it is possible to calculate the required volume of the bioreactor and the daily biogas production.


Table for obtaining the amount of manure from some animals with an approximate calculation of biogas yield

After the calculations have been made and the design of the bioreactor has been approved, its construction can begin. The material can be a reinforced concrete container poured into the ground, or brickwork sealed with a special coating that is used to treat swimming pools.

It is also possible to build the main tank of a home biogas plant from iron coated with anti-corrosion material. Small industrial bioreactors are often made from large-volume, chemical-resistant plastic tanks.


Construction of a bioreactor from brickwork

In industrial biogas plants they use electronic systems control and various reagents for correction chemical composition substrate and its acidity level, and special substances are added to the biomass - enzymes and vitamins that stimulate the reproduction and activity of microorganisms inside the bioreactor. In the process of development of microbiology, more and more stable and effective strains of methanogen bacteria are being created, which can be purchased from companies involved in the production of biogas.


The graph shows that with the use of enzymes, the maximum biogas yield occurs twice as fast

The need for pumping out and purifying biogas

Constant gas production in a bioreactor of any design leads to the need to pump out biogas. Some primitive biogas plants can burn the resulting gas directly in a burner installed nearby, but instability of the excess pressure in the bioreactor can lead to the disappearance of the flame with subsequent release poisonous gas. The use of such a primitive biogas installation connected to a stove is categorically unacceptable due to the possibility of poisoning by the toxic components of unpurified biogas.


The burner flame when burning biogas must be clean, even and stable.

Therefore, almost any biogas installation scheme includes gas storage tanks and a gas purification system. As a homemade cleaning complex, you can use a water filter and a homemade container filled with metal shavings, or purchase professional filtration systems. A container for temporary storage of biogas can be made from inner tubes from tires, from which the gas is pumped out from time to time by a compressor into standard propane cylinders for storage and subsequent use.


In some African countries, inflatable gas holders in the form of a pillow are used for storing and transporting biogas

An improved bioreactor with a floating dome can be considered as an alternative to the mandatory use of a gas tank. The improvement consists of adding a concentric partition, which forms a water pocket, acting like a water seal and preventing the biomass from coming into contact with air. The pressure inside the floating dome will depend on its weight. By passing the gas through a cleaning system and a reducer, it can be used in a household stove, periodically venting it from the bioreactor.


Bioreactor with floating dome and water pocket

Grinding and mixing the substrate in a bioreactor

Stirring the biomass is an important part of the biogas production process, providing bacteria with access to nutrients that may be clumped at the bottom of the digester. In order for biomass particles to be better mixed in the bioreactor, they must be crushed mechanically or manually before loading into the methane tank. Currently, in industrial and home-made biogas plants, three methods of mixing the substrate are used:

  1. mechanical stirrers, driven by an electric motor or manually;
  2. circulation mixing using a pump or propeller pumping the substrate inside the bioreactor;
  3. bubbling mixing using purging of liquid biomass with existing biogas. Disadvantage this method is the formation of foam on the surface of the substrate.

The arrow indicates the mixing circulation screw in a homemade bioreactor

Mechanical mixing of the substrate inside the bioreactor can be done manually or automatically by turning on the electric motor using an electronic timer. Water jet or bubbling mixing of biomass can only be carried out using electric motors controlled manually or using a software algorithm.

This bioreactor is equipped with a mechanical mixing device.

Substrate heating in mesophilic and thermophilic biogas plants

The optimum temperature for gas formation is the substrate temperature within 35-50ºC. To maintain this temperature, various heating systems– water, steam, electric. Temperature control should be carried out using a thermostat or thermocouples connected to an actuator that regulates the heating of the bioreactor.

You also need to remember that an open flame will overheat the walls of the bioreactor, and the biomass inside will burn. A burnt substrate will reduce heat transfer and heating quality, and the hot wall of the bioreactor will quickly collapse. One of best options is water heating from the return pipe of the home heating system. It is necessary to install a system of electric valves to be able to turn off the heating of the bioreactor or connect the heating of the substrate directly from the boiler if it is too cold.


Electric and water heating system for the bioreactor

Heating the substrate in a bioreactor using heating elements will be beneficial only if alternative electricity is available, obtained from a wind generator or solar panels. In this case, heating elements can be connected directly to a generator or battery, which eliminates expensive voltage converters from the circuit. To reduce heat loss and reduce the cost of heating the substrate in a bioreactor, it is necessary to insulate it as much as possible using various insulation materials.


Insulation of the bioreactor with thermal insulation material

Practical experiments inevitable when building biogas plants with your own hands

No matter how much literature a novice enthusiast of self-production of biogas reads, and no matter how many videos he watches, in practice he will have to learn a lot on his own, and the results, as a rule, will be far from the calculated ones.

Therefore, many beginning craftsmen follow the path of independent experiments in producing biogas, starting with small containers, determining how much gas their small experimental biogas plant produces from the available raw materials. Prices for components, methane output and future costs of building a full-fledged working biogas plant will determine its profitability and feasibility.


In the video above, the master demonstrates the capabilities of his biogas installation, measuring how much biogas is produced in one day. In his case, when eight atmospheres are pumped into the compressor receiver, the volume of the resulting gas after recalculation taking into account the volume of the 24 liter container will be about 0.2 m².

This volume of biogas obtained from a two-hundred-liter barrel is not significant, but, as shown in the following video of this master, this amount of gas is enough for an hour of burning one stove burner (15 minutes multiplied by four atmospheres of a cylinder, which is twice the size of the receiver).

In another video below, the master talks about producing biogas and biologically pure fertilizers by processing organic waste in a biogas plant. It must be borne in mind that the value of environmental fertilizers may exceed the cost of the resulting gas, and then biogas will become a useful by-product of the process of producing quality fertilizers. One more useful property organic raw materials is the ability to store them for a certain period for use at the right time.

You can get a cheap source of energy yourself, at home - you just need to assemble a biogas plant. If you understand the principle of its operation and structure, then this is not difficult to do. The mixture it produces contains a large amount of methane (depending on the loaded raw material - up to 70%), so it has a wide range of applications.

Refilling car cylinders running on gas as fuel for heating boilers is not a complete list of all possible options use of the finished product. Our story is about how to install a biogas plant with your own hands.

There are several designs of the unit. When choosing a particular engineering solution, you need to understand how suitable this installation is to local conditions. This is the main criterion for assessing the feasibility of installation. Plus, you have your own capabilities, that is, what type of raw materials and in what volume you can use, what you can do with your own hands.

Biogas is produced by the decomposition of organic matter, but its “yield” (in volumetric terms), and therefore the efficiency of the plant, depends on what exactly is loaded into it. The table provides relevant information (indicative data), which will help determine the choice of a specific engineering solution. Some explanatory graphics would also be useful.

Design options

With manual loading of raw materials, without heating and stirring

For domestic use, this model is considered the most convenient. With a reactor capacity of 1 to 10 m³, approximately 50–220 kg of manure will be needed daily. This is what you need to proceed from when deciding on the size of the container.

The installation is installed in the ground, so it will require a small pit. A location on the site is selected in accordance with its calculated dimensions. The composition and purpose of all elements of the circuit is not difficult to understand.

Installation feature

After installing the reactor on site, it is necessary to check its tightness. Then the metal must be painted (preferably with a frost-resistant composition) and insulated.

  • Removal of waste occurs naturally - either during the process of adding a new portion, or when there is an excess of gas in the reactor with the valve closed. Therefore, the capacity of the waste collection container should be no less than that of the working one.
  • Despite the simplicity of the device and the attractiveness for do-it-yourself assembly, due to the fact that mixing and heating of the mass are not provided, this installation option is advisable to operate in regions with a mild climate, that is, mainly in the south of Russia. Although, with high-quality thermal insulation, in conditions where underground water layers are deep, this design is quite suitable for the middle zone.

Without heating, but with stirring

Almost the same thing, only a small modification that significantly increases the performance of the installation.

How to make a mechanism? For someone who assembled it with their own hands, for example, this is not a problem. A shaft with blades will have to be mounted in the reactor. Therefore, it is necessary to install support bearings. It is good to use a chain as a transmission link between the shaft and the lever.

The biogas plant can be operated in almost all regions, with the exception of the northern regions. But unlike the previous model, it requires supervision.

Stirring + heating

The thermal effect on biomass increases the intensity of the decomposition and fermentation processes occurring in it. The biogas unit is more versatile in use, as it can operate in two modes - mesophilic and thermophilic, that is, in the temperature range (approximately) 25 - 65 ºС (see graphs above).

In the above diagram, the boiler runs on the resulting gas, although this is not the only option. Heating of biomass can be done in different ways, depending on how it is more convenient for the owner to organize it.

Automated options

The difference between this scheme is that it is connected to the installation. This allows you to accumulate gas reserves rather than using it immediately for its intended purpose. Ease of use is also due to the fact that almost any temperature regime is suitable for intensive fermentation.

This installation is even more productive. It is capable of processing up to 1.3 tons of raw materials per day with a similar reactor volume. Loading, mixing - pneumatics are responsible for this. The outlet channel allows waste to be removed either into a bunker for short-term storage, or into mobile containers for immediate removal. For example, for fertilizing fields.

These biogas plant options are hardly suitable for domestic use. Installing them, especially with your own hands, is much more difficult. But for the small one farm- good decision.

Mechanized biogas plant

The difference from previous models is in the additional tank in which preliminary preparation of the raw material mass occurs.

Compressed biogas is fed into the loading hopper and then into the reactor. It is also used for heating.

The only thing that is necessary when assembling any of the installations with your own hands is accurate engineering calculations. You may need to consult a specialist. Otherwise everything is quite simple. If at least one of the readers becomes interested in a biogas unit and installs it themselves, then the author did not work on this article in vain. Good luck!

The constant increase in the cost of traditional energy resources is pushing home craftsmen to create homemade equipment that allows them to produce biogas from waste with their own hands. With this approach to farming, it is possible not only to obtain cheap energy for heating the house and other needs, but also to establish the process of recycling organic waste and obtaining free fertilizers for subsequent application to the soil.

Excess produced biogas, like fertilizers, can be sold at market value to interested consumers, turning into money what is literally “lying under your feet.” Large farmers can afford to buy ready-made biogas production stations assembled in factories. The cost of such equipment is quite high. However, the return on its operation corresponds to the investment made. Less powerful installations that work on the same principle can be assembled on your own from available materials and parts.

What is biogas and how is it formed?

As a result of biomass processing, biogas is obtained

Biogas is classified as an environmentally friendly fuel. According to its characteristics, biogas is in many respects similar to natural gas produced on an industrial scale. The technology for producing biogas can be presented as follows:

  • in a special container called a bioreactor, the process of processing biomass takes place with the participation of anaerobic bacteria under airless fermentation conditions for a certain period, the duration of which depends on the volume of loaded raw materials;
  • as a result, a mixture of gases is released, consisting of 60% methane, 35% carbon dioxide, 5% other gaseous substances, among which there is a small amount of hydrogen sulfide;
  • the resulting gas is constantly removed from the bioreactor and, after purification, is sent for its intended use;
  • processed waste, which has become high-quality fertilizers, is periodically removed from the bioreactor and transported to the fields.

Visual diagram of the biofuel production process

In order to establish continuous production of biogas at home, you must own or have access to agricultural and livestock enterprises. It is economically profitable to produce biogas only if there is a source of free supply of manure and other organic waste from animal husbandry.

Gas heating remains the most reliable heating method. You can learn more about autonomous gasification in the following material:

Types of bioreactors

Installations for the production of biogas differ in the type of loading of raw materials, collection of the resulting gas, placement of the reactor relative to the surface of the earth, and material of manufacture. Concrete, brick and steel are the most suitable materials for constructing bioreactors.

Based on the type of loading, a distinction is made between bio-installations, into which a given portion of raw materials is loaded and goes through a processing cycle, and then completely unloaded. Gas production in these installations is unstable, but any type of raw material can be loaded into them. Typically they have vertical arrangement and take up little space.

A portion of organic waste is loaded into the system of the second type daily and an equal portion of ready-made fermented fertilizers is unloaded. The working mixture always remains in the reactor. The so-called continuous feeding plant consistently produces more biogas and is very popular among farmers. Basically, these reactors are located horizontally and are convenient if there is free space on the site.

The selected type of biogas collection determines the design features of the reactor.

  • balloon systems consist of a rubber or plastic heat-resistant cylinder in which a reactor and a gas holder are combined. The advantages of this type of reactor are simplicity of design, loading and unloading of raw materials, ease of cleaning and transportation, and low cost. The disadvantages include a short service life, 2-5 years, and the possibility of damage as a result of external influences. Balloon reactors also include channel-type units, which are widely used in Europe for processing liquid waste and Wastewater. This rubber top is effective at high ambient temperatures and there is no risk of damage to the cylinder. The fixed dome design has a completely enclosed reactor and a compensating tank for slurry discharge. Gas accumulates in the dome; when loading the next portion of raw materials, the processed mass is pushed into the compensation tank.
  • Biosystems with a floating dome consist of a monolithic bioreactor located underground and a movable gas holder, which floats in a special water pocket or directly in the raw material and rises under the influence of gas pressure. The advantage of a floating dome is ease of operation and the ability to determine gas pressure by the height of the dome. This is an excellent solution for a large farm.
  • When choosing an underground or above-surface installation location, you need to take into account the slope of the terrain, which makes it easier to load and unload raw materials, enhanced thermal insulation of underground structures, which protects the biomass from daily temperature fluctuations and makes the fermentation process more stable.

The design can be equipped with additional devices for heating and mixing raw materials.

Is it profitable to make a reactor and use biogas?

The construction of a biogas plant has the following goals:

  • production of cheap energy;
  • production of easily digestible fertilizers;
  • savings on connecting to expensive sewerage;
  • recycling of farm waste;
  • possible profit from gas sales;
  • reducing the intensity of unpleasant odors and improving the environmental situation in the area.

Profitability chart for biogas production and use

To assess the benefits of building a bioreactor, a prudent owner should consider the following aspects:

  • the cost of a bio-plant is a long-term investment;
  • homemade biogas equipment and installation of a reactor without the involvement of third-party specialists will cost much less, but its efficiency is also lower than that of an expensive factory one;
  • To maintain stable gas pressure, the farmer must have access to livestock waste in sufficient quantities and for a long period of time. In the case of high prices for electricity and natural gas or the lack of possibility of gasification, the use of the installation becomes not only profitable, but also necessary;
  • for large farms with their own raw material base, a profitable solution would be to include a bioreactor in the system of greenhouses and cattle farms;
  • For small farms, efficiency can be increased by installing several small reactors and loading raw materials at different time intervals. This will avoid interruptions in gas supply due to a lack of feedstock.

How to build a bioreactor on your own

The decision to build has been made, now we need to design the installation and calculate necessary materials, tools and equipment.

Important! Resistance to aggressive acidic and alkaline environments is the main requirement for bioreactor material.

If a metal tank is available, it can be used provided it has a protective coating against corrosion. When choosing a metal container, pay attention to the presence welds and their strength.

A durable and convenient option is a polymer container. This material does not rot or rust. A barrel with thick hard walls or reinforced will withstand the load perfectly.

The cheapest way is to lay out a container made of brick or stone or concrete blocks. To increase strength, the walls are reinforced and covered inside and outside with a multi-layer waterproofing and gas-tight coating. The plaster must contain additives that provide the specified properties. The best shape to withstand all pressure loads is oval or cylindrical.

At the base of this container there is a hole through which waste raw materials will be removed. This hole must be tightly closed, because the system only works effectively in sealed conditions.

Calculation of necessary tools and materials

To lay out a brick container and install the entire system, you will need the following tools and materials:

  • container for mixing cement mortar or concrete mixer;
  • drill with mixer attachment;
  • crushed stone and sand for constructing a drainage cushion;
  • shovel, tape measure, trowel, spatula;
  • brick, cement, water, fine sand, reinforcement, plasticizer and other necessary additives;
  • welding machine and fasteners for installation of metal pipes and components;
  • a water filter and a container with metal shavings for gas purification;
  • tire cylinders or standard propane cylinders for gas storage.

The size of the concrete tank is determined from the amount of organic waste that appears daily in a private farmstead or farm. Full operation of the bioreactor is possible if it is filled to two-thirds of the available volume.

Let us determine the volume of the reactor for a small private farm: if there are 5 cows, 10 pigs and 40 chickens, then per day of their life activity a litter of 5 x 55 kg + 10 x 4.5 kg + 40 x 0.17 kg = 275 kg + is formed 45 kg + 6.8 kg = 326.8 kg. To bring chicken droppings To reach the required humidity of 85%, add 5 liters of water. Total weight = 331.8 kg. For processing in 20 days you need: 331.8 kg x 20 = 6636 kg - about 7 cubic meters only for the substrate. This is two thirds of the required volume. To get the result, you need 7x1.5 = 10.5 cubic meters. The resulting value is the required volume of the bioreactor.

Remember that it will not be possible to produce large amounts of biogas in small containers. The yield directly depends on the mass of organic waste processed in the reactor. So, to get 100 cubic meters of biogas, you need to process a ton of organic waste.

Preparing a site for a bioreactor

The organic mixture loaded into the reactor should not contain antiseptics, detergents, chemicals that are harmful to the life of bacteria and slow down the production of biogas.

Important! Biogas is flammable and explosive.

For proper operation bioreactor must follow the same rules as for any gas installations. If the equipment is sealed and biogas is discharged into the gas tank in a timely manner, then there will be no problems.

If the gas pressure exceeds the norm or poisons if the seal is broken, there is a risk of explosion, so it is recommended to install temperature and pressure sensors in the reactor. Inhaling biogas is also dangerous to human health.

How to ensure biomass activity

You can speed up the fermentation process of biomass by heating it. As a rule, this problem does not arise in the southern regions. The ambient temperature is sufficient for the natural activation of fermentation processes. In regions with harsh climatic conditions in winter, it is generally impossible to operate a biogas production plant without heating. After all, the fermentation process starts at a temperature exceeding 38 degrees Celsius.

There are several ways to organize heating of a biomass tank:

  • connect the coil located under the reactor to the heating system;
  • install electric heating elements at the base of the container;
  • provide direct heating of the tank through the use of electric heating devices.

Bacteria that influence methane production are dormant in the raw materials themselves. Their activity increases at a certain temperature level. The installation will ensure the normal course of the process automated system heating The automation will turn on the heating equipment when the next cold batch enters the bioreactor, and then turn it off when the biomass warms up to the specified temperature level.

Similar temperature control systems are installed in hot water boilers, so they can be purchased in stores specializing in the sale of gas equipment.

The diagram shows the entire cycle, starting from the loading of solid and liquid raw materials, and ending with the removal of biogas to consumers

It is important to note that you can activate biogas production at home by mixing biomass in a reactor. For this purpose, a device is made that is structurally similar to a household mixer. The device can be set in motion by a shaft that is output through a hole located in the lid or walls of the tank.

What special permits are required for the installation and use of biogas

In order to build and operate a bioreactor, as well as use the resulting gas, you need to take care of obtaining the necessary permits at the design stage. Coordination must be completed with the gas service, firefighters and Rostechnadzor. In general, the rules for installation and operation are similar to the rules for using conventional gas equipment. Construction must be carried out strictly in accordance with SNIPs, all pipelines must be yellow and have appropriate markings. Ready-made systems manufactured at the factory cost several times more, but have all the accompanying documents and comply with all technical requirements. Manufacturers provide a warranty on equipment and provide maintenance and repair of their products.

A home-made installation for producing biogas can allow you to save on energy costs, which occupy a large share in determining the cost of agricultural products. Reducing production costs will affect the increase in profitability of a farm or private farmstead. Now that you know how to obtain biogas from existing waste, all that remains is to put the idea into practice. Many farmers have long learned to make money from manure.

Among the important components of our lives, energy resources are of great importance, prices for which are rising almost every month. Every winter season makes a hole in family budgets, forcing them to incur heating costs, and therefore, fuel for stoves and heating boilers. But what to do, after all, electricity, gas, coal or firewood cost money, and the more remote our homes are from major energy highways, the more expensive heating will cost... Meanwhile, alternative heating, independent of any suppliers and tariffs, can be built on biogas, the extraction of which does not require geological exploration, well drilling, or expensive pumping equipment.

Biogas can be obtained in almost home conditions, while incurring minimal, quickly recouping costs - most of the answers on this issue are contained in this article.

Biogas heating - history

Interest in flammable gas formed in swamps during the warm season of the year arose among our distant ancestors - advanced cultures of India, China, Persia and Assyria experimented with biogas over 3 thousand years ago. In the same ancient times, in tribal Europe, the Alemanni Swabians noticed that the gas released in the swamps burned well - they used it to heat their huts, supplying gas to them through leather pipes and burning them in the hearths. The Swabians considered biogas to be the “breath of dragons,” which they believed lived in swamps.

Centuries and millennia later, biogas experienced its second discovery - in the 17th and 18th centuries, two European scientists immediately paid attention to it. The famous chemist of his time, Jan Baptista van Helmont, established that the decomposition of any biomass produces a flammable gas, and the famous physicist and chemist Alessandro Volta established a direct relationship between the amount of biomass in which decomposition processes take place and the amount of biogas released. In 1804, the English chemist John Dalton discovered the formula for methane, and four years later the Englishman Humphry Davy discovered it as part of swamp gas. Interest in practical application biogas arose with the development of gas street lighting - at the end of the 19th century, the streets of one district of the English city of Exeter were illuminated with gas obtained from a sewage collector.

In the 20th century, energy demands caused by World War II forced Europeans to look for alternative energy sources. Biogas plants, in which gas was produced from manure, spread in Germany and France, and partly in Eastern Europe. However, after the victory of the countries of the anti-Hitler coalition, biogas was forgotten - electricity, natural gas and petroleum products completely covered the needs of industries and the population.

Today, the attitude towards alternative energy sources has changed dramatically - they have become interesting, since the cost of conventional energy resources increases from year to year. At its core, biogas is real way get away from tariffs and costs for classical energy resources, get your own source of fuel, for any purpose and in sufficient quantity.

The largest number of biogas plants have been created and operated in China: 40 million plants of medium and low power, the volume of methane produced is about 27 billion m3 per year.

Biogas - what is it

This is a gas mixture consisting mainly of methane (content from 50 to 85%), carbon dioxide (content from 15 to 50%) and other gases in much smaller percentages. Biogas is produced by a team of three types of bacteria that feed on biomass - hydrolysis bacteria, which produce food for acid-forming bacteria, which in turn provide food for methane-producing bacteria, which form biogas.

Fermentation of the original organic material (for example, manure), the product of which will be biogas, takes place without access to an external atmosphere and is called anaerobic. Another product of such fermentation, called compost humus, is well known to rural residents, who use it to fertilize fields and vegetable gardens, but the biogas produced in compost heaps and thermal energy usually not used - and in vain!

What factors determine the yield of biogas with a higher methane content?

First of all, it depends on the temperature. The higher the temperature of their environment, the higher the activity of bacteria fermenting organic matter; at sub-zero temperatures, fermentation slows down or stops completely. For this reason, biogas production is most common in countries in Africa and Asia, located in the subtropics and tropics. In the Russian climate, the production of biogas and a complete transition to it as an alternative fuel will require thermal insulation of the bioreactor and the introduction of warm water into the mass of organic matter when the temperature of the external atmosphere drops below zero. The organic material placed in the bioreactor must be biodegradable, it is required to introduce it contains a significant amount of water - up to 90% of the mass of organic matter. An important point will be the neutrality of the organic environment, the absence in its composition of components that prevent the development of bacteria, such as cleaning and detergents, and any antibiotics. Biogas can be obtained from almost any waste of economic and plant origin, wastewater, manure, etc.

The process of anaerobic fermentation of organic matter works best when the pH value is in the range of 6.8-8.0 - high acidity will slow down the formation of biogas, because the bacteria will be busy consuming acids and producing carbon dioxide, which neutralizes the acidity.

The ratio of nitrogen and carbon in the bioreactor must be calculated as 1 to 30 - in this case, the bacteria will receive the amount of carbon dioxide they need, and the methane content in the biogas will be the highest.

The best yield of biogas with a sufficiently high methane content is achieved if the temperature in the fermentable organic matter is in the range of 32-35 ° C; at lower and higher temperatures, the content of carbon dioxide in the biogas increases and its quality decreases. Bacteria that produce methane are divided into three groups: psychrophilic, effective at temperatures from +5 to +20 ° C; mesophilic, their temperature range is from +30 to +42 °C; thermophilic, operating in the mode from +54 to +56 °C. For the biogas consumer, mesophilic and thermophilic bacteria, which ferment organic matter with a higher gas yield, are of greatest interest.

Mesophilic fermentation is less sensitive to changes in temperature by a couple of degrees from the optimal temperature range and requires less energy to heat organic material in the bioreactor. Its disadvantages, compared to thermophilic fermentation, are lower gas output, a longer period of complete processing of the organic substrate (about 25 days), and the resulting decomposed organic material may contain harmful flora, because the low temperature in the bioreactor does not ensure 100% sterility.

Raising and maintaining the intra-reactor temperature at a level acceptable for thermophilic bacteria will ensure the greatest yield of biogas, complete fermentation of organic matter will take place in 12 days, the decomposition products of the organic substrate are completely sterile. Negative characteristics: a change in temperature by 2 degrees outside the range acceptable for thermophilic bacteria will reduce gas yield; high need for heating, as a result - significant energy costs.

The contents of the bioreactor must be stirred twice a day, otherwise a crust will form on its surface, creating a barrier to biogas. In addition to eliminating it, stirring allows you to equalize the temperature and acidity level inside the organic mass. In continuous-cycle bioreactors, the highest biogas yield occurs with the simultaneous unloading of organic matter that has undergone fermentation and the loading of a volume of new organic matter in an amount equal to the unloaded volume. In small-volume bioreactors, the kind that are usually used in dacha farms, every day it is necessary to extract and introduce organic matter in a volume approximately equal to 5% of the internal volume of the fermentation chamber.

The yield of biogas directly depends on the type of organic substrate placed in the bioreactor (the average data per kg of dry substrate weight is given below):

  1. horse manure produces 0.27 m3 of biogas, methane content 57%;
  2. cattle manure produces 0.3 m3 of biogas, methane content 65%;
  3. fresh cattle manure produces 0.05 m3 of biogas with 68% methane content;
  4. chicken manure - 0.5 m3, the methane content in it will be 60%;
  5. pork manure - 0.57 m3, the share of methane will be 70%;
  6. sheep manure - 0.6 m3 with a methane content of 70%;
  7. wheat straw - 0.27 m3, with 58% methane content;
  8. corn straw - 0.45 m3, methane content 58%;
  9. grass - 0.55 m3, with 70% methane content;
  10. wood foliage - 0.27 m3, methane share 58%;
  11. fat - 1.3 m3, methane content 88%.

Biogas plants

These devices consist of the following main elements - a reactor, an organic loading hopper, a biogas outlet, and a fermented organic matter unloading hopper.

According to the type of design, biogas plants are of the following types:

  • without heating and without stirring the fermented organic matter in the reactor;
  • without heating, but with stirring of the organic mass;
  • with heating and stirring;
  • with heating, with stirring and with devices that allow you to control and manage the fermentation process.

The first type of biogas plant is suitable for a small farm and is designed for psychrophilic bacteria: the internal volume of the bioreactor is 1-10 m3 (processing 50-200 kg of manure per day), minimal equipment, the resulting biogas is not stored - it immediately goes to those consuming it household appliances. This installation can only be used in southern regions; it is designed for an internal temperature of 5-20 ° C.

Removal of fermented (fermented) organic matter is carried out simultaneously with the loading of a new batch; the shipment is carried out into a container, the volume of which must be equal to or greater than the internal volume of the bioreactor. The contents of the container are stored in it until introduced into the fertilized soil. The design of the second type is also designed for small farms; its productivity is slightly higher than the biogas plants of the first type - it is equipped with a mixing device with a manual or mechanical drive.

The third type of biogas plants is equipped, in addition to the mixing device, with forced heating of the bioreactor; the hot water boiler runs on alternative fuel produced by the biogas plant. Methane production in such installations is carried out by mesophilic and thermophilic bacteria, depending on the heating intensity and temperature level in the reactor.

The last type of biogas plants is the most complex and is designed for several consumers of biogas; the design of the plants includes an electric contact pressure gauge, a safety valve, a hot water boiler, a compressor (pneumatic mixing of organic matter), a receiver, a gas tank, a gas reducer, and an outlet for loading biogas into transport. These installations operate continuously, allow the setting of any of three temperature conditions thanks to precisely adjustable heating, and biogas selection is carried out automatically.

DIY biogas plant

The calorific value of biogas produced in biogas plants is approximately 5,500 kcal/m3, which is slightly lower than the calorific value of natural gas (7,000 kcal/m3). To heat 50 m2 of a residential building and use a four-burner gas stove for an hour, an average of 4 m3 of biogas will be required.

Offered on the Russian market industrial installations for biogas production cost from 200,000 rubles. - despite their apparently high cost, it is worth noting that these installations are precisely calculated according to the volume of loaded organic substrate and are covered by manufacturers’ warranties.

If you prefer to create a biogas plant yourself, then further information is for you!

Bioreactor form

The best shape for it would be oval (egg-shaped), but building such a reactor is extremely difficult. A cylindrical bioreactor, the upper and lower parts of which are made in the form of a cone or semicircle, will be easier to design. Square or rectangular reactors made of brick or concrete will be ineffective because... Over time, cracks will form in the corners in them, caused by the pressure of the substrate; hardened fragments of organic matter will accumulate in the corners, interfering with the fermentation process. Steel tanks of bioreactors are airtight, resistant to high pressure, and they are not so difficult to build. Their disadvantage is their poor resistance to rust; they require a protective coating, for example, resin, to be applied to the inner walls. The outside of the steel bioreactor must be thoroughly cleaned and painted in two layers.

Bioreactor containers made of concrete, brick or stone must be carefully coated on the inside with a layer of resin that can ensure their effective water and gas impermeability, withstand temperatures of about 60 ° C, and the aggression of hydrogen sulfide and organic acids. In addition to resin, to protect the internal surfaces of the reactor, you can use paraffin, diluted with 4% motor oil (new) or kerosene and heated to 120-150 ° C - the surfaces of the bioreactor must be heated with a burner before applying a paraffin layer to them.

When creating a bioreactor, you can use plastic containers that are not susceptible to rust, but only hard plastic with sufficiently strong walls. Soft plastic can only be used in the warm season, because... With the onset of cold weather, it will be difficult to attach insulation to it, and its walls are not strong enough. Plastic bioreactors can only be used for psychrophilic fermentation of organic matter.

Bioreactor location

Its placement is planned depending on the available space on a given site, sufficient distance from residential buildings, distance from the waste disposal site, from animal placement sites, etc. Planning a ground-based, fully or partially submerged bioreactor depends on the groundwater level, the convenience of introducing and removing the organic substrate into the reactor tank. It would be optimal to place the reactor vessel below ground level - savings are achieved on equipment for introducing an organic substrate into the reactor tank, thermal insulation is significantly increased, for which inexpensive materials (straw, clay) can be used.

Bioreactor equipment

The reactor tank must be equipped with a hatch, which can be used to carry out repairs and preventative work. It is necessary to lay a rubber gasket or a layer of sealant between the bioreactor body and the hatch cover. It is optional, but extremely convenient, to equip the bioreactor with a sensor for temperature, internal pressure and organic substrate level.

Bioreactor thermal insulation

Its absence will not allow the operation of the biogas plant all year round, only in warm weather. To insulate a buried or semi-buried bioreactor, clay, straw, dry manure and slag are used. The insulation is laid in layers - when installing a buried reactor, the pit is covered with a layer of PVC film, which prevents direct contact of the heat-insulating material with the soil. Before installing the bioreactor, straw is poured onto the bottom of the pit with a PVC film laid, a layer of clay is placed on top of it, then the bioreactor is placed. After this, all free areas between the reactor tank and the foundation pit lined with PVC film are filled with straw almost to the end of the tank, and a layer of clay mixed with slag is poured on top of a 300 mm layer.

Loading and unloading organic substrate

The diameter of the pipes for loading into and unloading from the bioreactor must be at least 300 mm, otherwise they will clog. In order to maintain anaerobic conditions inside the reactor, each of these pipes should be equipped with screw or half-turn valves. The volume of the bunker for supplying organic matter, depending on the type of biogas plant, should be equal to the daily volume of input raw materials. The feed hopper should be located on the sunny side of the bioreactor, because this will help to increase the temperature in the introduced organic substrate, accelerating the fermentation processes. If the biogas plant is connected directly to the farm, then the bunker should be placed under its structure so that the organic substrate enters it under the influence of gravity.

The pipelines for loading and unloading the organic substrate should be located on opposite sides of the bioreactor - in this case, the input raw materials will be distributed evenly, and the fermented organic matter will be easily removed under the influence of gravitational forces and the mass of the fresh substrate. Holes and installation of the pipeline for loading and unloading organic matter should be completed before installing the bioreactor at the installation site and before placing layers of thermal insulation on it. The tightness of the internal volume of the bioreactor is achieved by the fact that the inputs of the substrate loading and unloading pipes are located at an acute angle, while the liquid level inside the reactor is higher than the pipe entry points - a hydraulic seal blocks the access of air.

It is easiest to introduce new and remove fermented organic material using the overflow principle, i.e. a rise in the level of organic matter inside the reactor when a new portion is introduced will remove the substrate through the unloading pipe in a volume equal to the volume of the introduced material.